Displaying similar documents to “Representation formula for the entropy and functional inequalities”

Some Remarks on Functionals with the Tensorization Property

Paweł Wolff (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We investigate the subadditivity property (also known as the tensorization property) of φ-entropy functionals and their iterations. In particular we show that the only iterated φ-entropies with the tensorization property are iterated variances. This is a complement to the result due to Latała and Oleszkiewicz on characterization of the standard φ-entropies with the tensorization property.

Maličky-Riečan's entropy as a version of operator entropy

Bartosz Frej (2006)

Fundamenta Mathematicae

Similarity:

The paper deals with the notion of entropy for doubly stochastic operators. It is shown that the entropy defined by Maličky and Riečan in [MR] is equal to the operator entropy proposed in [DF]. Moreover, some continuity properties of the [MR] entropy are established.

An integral formula for entropy of doubly stochastic operators

Bartosz Frej, Paulina Frej (2011)

Fundamenta Mathematicae

Similarity:

A new formula for entropy of doubly stochastic operators is presented. It is also checked that this formula fulfills the axioms of the axiomatic definition of operator entropy, introduced in an earlier paper of Downarowicz and Frej. As an application of the formula the 'product rule' is obtained, i.e. it is shown that the entropy of a product is the sum of the entropies of the factors. Finally, the proof of continuity of the new 'static' entropy as a function of the measure is given. ...

Fiber entropy and conditional variational principles in compact non-metrizable spaces

Tomasz Downarowicz, Jacek Serafin (2002)

Fundamenta Mathematicae

Similarity:

We consider a pair of topological dynamical systems on compact Hausdorff (not necessarily metrizable) spaces, one being a factor of the other. Measure-theoretic and topological notions of fiber entropy and conditional entropy are defined and studied. Abramov and Rokhlin's definition of fiber entropy is extended, using disintegration. We prove three variational principles of conditional nature, partly generalizing some results known before in metric spaces: (1) the topological conditional...

A note on the entropy of a doubly stochastic operator

Brunon Kamiński, José de Sam Lazaro (2000)

Colloquium Mathematicae

Similarity:

We investigate the properties of the entropy and conditional entropy of measurable partitions of unity in the space of essentially bounded functions defined on a Lebesgue probability space.

Entropy dimension and variational principle

Young-Ho Ahn, Dou Dou, Kyewon Koh Park (2010)

Studia Mathematica

Similarity:

Recently the notions of entropy dimension for topological and measurable dynamical systems were introduced in order to study the complexity of zero entropy systems. We exhibit a class of strictly ergodic models whose topological entropy dimensions range from zero to one and whose measure-theoretic entropy dimensions are identically zero. Hence entropy dimension does not obey the variational principle.

Further results on the generalized cumulative entropy

Antonio Di Crescenzo, Abdolsaeed Toomaj (2017)

Kybernetika

Similarity:

Recently, a new concept of entropy called generalized cumulative entropy of order n was introduced and studied in the literature. It is related to the lower record values of a sequence of independent and identically distributed random variables and with the concept of reversed relevation transform. In this paper, we provide some further results for the generalized cumulative entropy such as stochastic orders, bounds and characterization results. Moreover, some characterization results...

Quantum dynamical entropy revisited

Thomas Hudetz (1998)

Banach Center Publications

Similarity:

We define a new quantum dynamical entropy for a C*-algebra automorphism with an invariant state (and for an appropriate 'approximating' subalgebra), which entropy is a 'hybrid' of the two alternative definitions by Connes, Narnhofer and Thirring resp. by Alicki and Fannes (and earlier, Lindblad). We report on this entropy's properties and on three examples.

Entropy pairs of ℤ² and their directional properties

Kyewon Koh Park, Uijung Lee (2004)

Studia Mathematica

Similarity:

Topological and metric entropy pairs of ℤ²-actions are defined and their properties are investigated, analogously to ℤ-actions. In particular, mixing properties are studied in connection with entropy pairs.

Maximal entropy measures in dimension zero

Dawid Huczek (2012)

Colloquium Mathematicae

Similarity:

We prove that an invertible zero-dimensional dynamical system has an invariant measure of maximal entropy if and only if it is an extension of an asymptotically h-expansive system of equal topological entropy.