Fatou components whose boundaries have a common curve
Shunsuke Morosawa (2004)
Fundamenta Mathematicae
Similarity:
We show that the Fatou components of a certain transcendental entire function have a common curve in their boundaries.
Shunsuke Morosawa (2004)
Fundamenta Mathematicae
Similarity:
We show that the Fatou components of a certain transcendental entire function have a common curve in their boundaries.
Q. I. Rahman (1965)
Annales Polonici Mathematici
Similarity:
Domar, Yngve (1997)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
P. K. Kamthan, P. K. Jain (1969)
Annales Polonici Mathematici
Similarity:
S. K. Vaish, H. S. Kasana (1982)
Publications de l'Institut Mathématique
Similarity:
Indrajit Lahiri, Gautam Kumar Ghosh (2009)
Annales Polonici Mathematici
Similarity:
We study the uniqueness of entire functions which share a value or a function with their first and second derivatives.
Feng Lü, Junfeng Xu (2012)
Annales Polonici Mathematici
Similarity:
Applying the normal family theory and the theory of complex differential equations, we obtain a uniqueness theorem for entire functions that share a function with their first and second derivative, which generalizes several related results of G. Jank, E. Mues & L. Volkmann (1986), C. M. Chang & M. L. Fang (2002) and I. Lahiri & G. K. Ghosh (2009).
L. S. O. Liverpool, Umaru Umar (1982)
Publications de l'Institut Mathématique
Similarity:
Jörg Winkelmann (2011)
Annales de l’institut Fourier
Similarity:
We determine which algebraic surface of logarithmic irregularity admit an algebraically non-degenerate entire curve.
Sheng Li, Zongsheng Gao, Jilong Zhang (2012)
Annales Polonici Mathematici
Similarity:
We investigate the uniqueness of entire functions sharing values or small functions with their derivatives. One of our results gives a necessary condition on the Nevanlinna deficiency of the entire function f sharing one nonzero finite value CM with its derivative f'. Some applications of this result are provided. Finally, we prove some further results on small function sharing.
Małgorzata Downarowicz, Adam Janik (1985)
Annales Polonici Mathematici
Similarity:
S. K. Singh (1976)
Matematički Vesnik
Similarity:
Bogusława Karpińska (2003)
Fundamenta Mathematicae
Similarity:
We prove that for some families of entire functions whose Julia set is the complement of the basin of attraction every branch of a tree of preimages starting from this basin is convergent.
A. E. Eremenko (1989)
Banach Center Publications
Similarity:
S. K. Bajpai, S. K. Singh-Gautam, S. S. Bajpai (1980)
Annales Polonici Mathematici
Similarity: