Degeneracy of entire curves in log surfaces with q ¯ = 2

Jörg Winkelmann[1]

  • [1] Rhur-Universität Bochum Mathematisches Institut Lehrstuhl Analysis II NA 4/73 44780 Bochum (Germany)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 4, page 1517-1537
  • ISSN: 0373-0956

Abstract

top
We determine which algebraic surface of logarithmic irregularity  2 admit an algebraically non-degenerate entire curve.

How to cite

top

Winkelmann, Jörg. "Degeneracy of entire curves in log surfaces with $\bar{q}=2$." Annales de l’institut Fourier 61.4 (2011): 1517-1537. <http://eudml.org/doc/219829>.

@article{Winkelmann2011,
abstract = {We determine which algebraic surface of logarithmic irregularity $2$ admit an algebraically non-degenerate entire curve.},
affiliation = {Rhur-Universität Bochum Mathematisches Institut Lehrstuhl Analysis II NA 4/73 44780 Bochum (Germany)},
author = {Winkelmann, Jörg},
journal = {Annales de l’institut Fourier},
keywords = {Entire curve; holomorphic map; logarithmic irregularity; complex surface; entire curve; algebraic suface},
language = {eng},
number = {4},
pages = {1517-1537},
publisher = {Association des Annales de l’institut Fourier},
title = {Degeneracy of entire curves in log surfaces with $\bar\{q\}=2$},
url = {http://eudml.org/doc/219829},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Winkelmann, Jörg
TI - Degeneracy of entire curves in log surfaces with $\bar{q}=2$
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1517
EP - 1537
AB - We determine which algebraic surface of logarithmic irregularity $2$ admit an algebraically non-degenerate entire curve.
LA - eng
KW - Entire curve; holomorphic map; logarithmic irregularity; complex surface; entire curve; algebraic suface
UR - http://eudml.org/doc/219829
ER -

References

top
  1. Robert Brody, Compact manifolds in hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219 Zbl0416.32013MR470252
  2. Gregery T. Buzzard, Steven S.-Y. Lu, Double sections, dominating maps, and the Jacobian fibration, Amer. J. Math. 122 (2000), 1061-1084 Zbl0967.32015MR1781932
  3. F Campana, Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, (2008) Zbl1236.14039MR2831280
  4. Gerd Dethloff, Steven S.-Y. Lu, Logarithmic surfaces and hyperbolicity, Ann. Inst. Fourier (Grenoble) 57 (2007), 1575-1610 Zbl1142.14024MR2364143
  5. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366 Zbl0588.14026MR718935
  6. Brendan Hassett, Yuri Tschinkel, Density of integral points on algebraic varieties, Rational points on algebraic varieties 199 (2001), 169-197, Birkhäuser, Basel Zbl1018.14008MR1875174
  7. Yujiro Kawamata, Characterization of abelian varieties, Compositio Math. 43 (1981), 253-276 Zbl0471.14022MR622451
  8. Shoshichi Kobayashi, Hyperbolic complex spaces, 318 (1998), Springer-Verlag, Berlin Zbl0917.32019MR1635983
  9. Junjiro Noguchi, Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties, Nagoya Math. J. 83 (1981), 213-233 Zbl0429.32003MR632655
  10. Junjiro Noguchi, Jörg Winkelmann, Katsutoshi Yamanoi, Degeneracy of holomorphic curves into algebraic varieties, J. Math. Pures Appl. (9) 88 (2007), 293-306 Zbl1135.32018MR2355461
  11. Junjiro Noguchi, Jörg Winkelmann, Katsutoshi Yamanoi, The second main theorem for holomorphic curves into semi-abelian varieties. II, Forum Math. 20 (2008), 469-503 Zbl1145.32009MR2418202
  12. Paul Vojta, Diophantine approximations and value distribution theory, 1239 (1987), Springer-Verlag, Berlin Zbl0609.14011MR883451
  13. Paul Vojta, Integral points on subvarieties of semiabelian varieties. I, Invent. Math. 126 (1996), 133-181 Zbl1011.11040MR1408559
  14. Paul Vojta, Integral points on subvarieties of semiabelian varieties. II, Amer. J. Math. 121 (1999), 283-313 Zbl1018.11027MR1680329
  15. Jörg Winkelmann, On a special class of complex tori, J. Lie Theory 16 (2006), 93-95 Zbl1147.22007MR2196416
  16. Jörg Winkelmann, On Brody and entire curves, Bull. Soc. Math. France 135 (2007), 25-46 Zbl1159.32015MR2430197

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.