Displaying similar documents to “Pulling back cohomology classes and dynamical degrees of monomial maps”

Describing toric varieties and their equivariant cohomology

Matthias Franz (2010)

Colloquium Mathematicae

Similarity:

Topologically, compact toric varieties can be constructed as identification spaces: they are quotients of the product of a compact torus and the order complex of the fan. We give a detailed proof of this fact, extend it to the non-compact case and draw several, mostly cohomological conclusions. In particular, we show that the equivariant integral cohomology of a toric variety can be described in terms of piecewise polynomials on the fan if the ordinary integral cohomology is concentrated...

Intersection cohomology of reductive varieties

Roy Joshua, Michel Brion (2004)

Journal of the European Mathematical Society

Similarity:

We extend the methods developed in our earlier work to algorithmically compute the intersection cohomology Betti numbers of reductive varieties. These form a class of highly symmetric varieties that includes equivariant compactifications of reductive groups. Thereby, we extend a well-known algorithm for toric varieties.

Weights in the cohomology of toric varieties

Andrzej Weber (2004)

Open Mathematics

Similarity:

We describe the weight filtration in the cohomology of toric varieties. We present a role of the Frobenius automorphism in an elementary way. We prove that equivariant intersection homology of an arbitrary toric variety is pure. We obtain results concerning Koszul duality: nonequivariant intersection cohomology is equal to the cohomology of the Koszul complexIH T*(X)⊗H*(T). We also describe the weight filtration inIH *(X).

Cohomology, symmetry and perfection.

Emili Bifet (1992)

Publicacions Matemàtiques

Similarity:

We explain the philosophy behind the computations in [BDP] and place them in a wider conceptual setting. We also outline, for toric varieties, the resulting equivalent approach to some key results in that theory.

The Gray filtration on phantom maps

Lê Minh Hà, Jeffrey Strom (2001)

Fundamenta Mathematicae

Similarity:

This paper is a study of the Gray index of phantom maps. We give a new, tower theoretic, definition of the Gray index, which allows us to study the naturality properties of the Gray index in some detail. McGibbon and Roitberg have shown that if f* is surjective on rational cohomology, then the induced map on phantom sets is also surjective. We show that if f* is surjective just in dimension k, then f induces a surjection on a certain subquotient of the phantom set....

Turbulent maps and their ω-limit sets

F. Balibrea, C. La Paz (1997)

Annales Polonici Mathematici

Similarity:

One-dimensional turbulent maps can be characterized via their ω-limit sets [1]. We give a direct proof of this characterization and get stronger results, which allows us to obtain some other results on ω-limit sets, which previously were difficult to prove.