Displaying similar documents to “Stabilization of the Kawahara equation with localized damping”

Stabilization of the Kawahara equation with localized damping

Carlos F. Vasconcellos, Patricia N. da Silva (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the stabilization of global solutions of the Kawahara (K) equation in a bounded interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model. The proof requires of a unique continuation theorem and the smoothing effect of the (K) equation on the real line, which are proved in this work. ...

Unique continuation and decay for the Korteweg-de Vries equation with localized damping

Ademir Fernando Pazoto (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This work is devoted to prove the exponential decay for the energy of solutions of the Korteweg-de Vries equation in a bounded interval with a localized damping term. Following the method in Menzala (2002) which combines energy estimates, multipliers and compactness arguments the problem is reduced to prove the unique continuation of weak solutions. In Menzala (2002) the case where solutions vanish on a neighborhood of both extremes of the bounded interval where equation holds was solved...

On the nonlinear stabilization of the wave equation

Aissa Guesmia (1998)

Annales Polonici Mathematici

Similarity:

We obtain a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with nonlinear internal and boundary feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.

A Carleman estimates based approach for the stabilization of some locally damped semilinear hyperbolic equations

Louis Tebou (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

First, we consider a semilinear hyperbolic equation with a locally distributed damping in a bounded domain. The damping is located on a neighborhood of a suitable portion of the boundary. Using a Carleman estimate [Duyckaerts, Zhang and Zuazua, Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear); Fu, Yong and Zhang, SIAM J. Contr. Opt. 46 (2007) 1578–1614], we prove that the energy of this system decays exponentially to zero as the time variable goes to infinity. Second, relying on...