Stabilization of the Kawahara equation with localized damping
Carlos F. Vasconcellos; Patricia N. da Silva
ESAIM: Control, Optimisation and Calculus of Variations (2011)
- Volume: 17, Issue: 1, page 102-116
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topVasconcellos, Carlos F., and da Silva, Patricia N.. "Stabilization of the Kawahara equation with localized damping." ESAIM: Control, Optimisation and Calculus of Variations 17.1 (2011): 102-116. <http://eudml.org/doc/197270>.
@article{Vasconcellos2011,
abstract = {
We study the stabilization of global solutions of the
Kawahara (K) equation in a bounded interval, under the effect of
a localized damping mechanism. The Kawahara equation is a model
for small amplitude long waves. Using multiplier techniques and
compactness arguments we prove the
exponential decay of the solutions of the (K) model. The proof
requires of a unique continuation theorem and the smoothing effect
of the (K) equation on the real line, which are proved in this work.
},
author = {Vasconcellos, Carlos F., da Silva, Patricia N.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Kawahara equation; stabilization; energy decay; localized damping},
language = {eng},
month = {2},
number = {1},
pages = {102-116},
publisher = {EDP Sciences},
title = {Stabilization of the Kawahara equation with localized damping},
url = {http://eudml.org/doc/197270},
volume = {17},
year = {2011},
}
TY - JOUR
AU - Vasconcellos, Carlos F.
AU - da Silva, Patricia N.
TI - Stabilization of the Kawahara equation with localized damping
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2011/2//
PB - EDP Sciences
VL - 17
IS - 1
SP - 102
EP - 116
AB -
We study the stabilization of global solutions of the
Kawahara (K) equation in a bounded interval, under the effect of
a localized damping mechanism. The Kawahara equation is a model
for small amplitude long waves. Using multiplier techniques and
compactness arguments we prove the
exponential decay of the solutions of the (K) model. The proof
requires of a unique continuation theorem and the smoothing effect
of the (K) equation on the real line, which are proved in this work.
LA - eng
KW - Kawahara equation; stabilization; energy decay; localized damping
UR - http://eudml.org/doc/197270
ER -
References
top- T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. A 272 (1972) 47–78.
- N.G. Berloff and L.N. Howard, Solitary and periodic solutions for nonlinear nonintegrable equations. Stud. Appl. Math.99 (1997) 1–24.
- H.A. Biagioni and F. Linares, On the Benney-Lin and Kawahara equations. J. Math. Anal. Appl.211 (1997) 131–152.
- J.L. Bona and H. Chen, Comparison of model equations for small-amplitude long waves. Nonlinear Anal.38 (1999) 625–647.
- T.J. Bridges and G. Derks, Linear instability of solitary wave solutions of the Kawahara equation and its generalizations. SIAM J. Math. Anal.33 (2002) 1356–1378.
- J.M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lenghts. J. Eur. Math. Soc.6 (2004) 367–398.
- G.G. Doronin and N.A. Larkin, Kawahara equation in a bounded domain. Discrete Continuous Dyn. Syst., Ser. B10 (2008) 783–799.
- H. Hasimoto, Water waves. Kagaku40 (1970) 401–408 [in Japanese].
- T. Kakutani and H. Ono, Weak non-linear hydromagnetic waves in a cold collision-free plasma. J. Phys. Soc. Japan26 (1969) 1305–1318.
- T. Kawahara, Oscillatory solitary waves in dispersive media. J. Phys. Soc. Japan33 (1972) 260–264.
- F. Linares and J.H. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation. ESAIM: COCV11 (2005) 204–218.
- F. Linares and A.F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries with localized damping. Proc. Amer. Math. Soc.135 (2007) 1515–1522.
- J.L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1: Contrôlabilité Exacte, in RMA8, Masson, Paris, France (1988).
- C.P. Massarolo, G.P. Menzala and A.F. Pazoto, On the uniform decay for the Korteweg-de Vries equation with weak damping. Math. Meth. Appl. Sci.30 (2007) 1419–1435.
- G.P. Menzala, C.F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping. Quarterly Applied Math.LX (2002) 111–129.
- A.F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping. ESAIM: COCV11 (2005) 473–486.
- A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, USA (1983).
- J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J.24 (1974) 79–86.
- L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV2 (1997) 33–55.
- L. Rosier and B.Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain. SIAM J. Contr. Opt.45 (2006) 927–956.
- D.L. Russell and B.Y. Zhang, Exact controllability and stabilization of the Korteweg-de Vries equation. Trans. Amer. Math. Soc.348 (1996) 1515–1522.
- J.C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Diff. Equation66 (1987) 118–139.
- G. Schneider and C.E. Wayne, The rigorous approximation of long-wavelength capillary-gravity waves. Arch. Ration. Mech. Anal.162 (2002) 247–285.
- J. Topper and T. Kawahara, Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Japan44 (1978) 663–666.
- C.F. Vasconcellos and P.N. da Silva, Stabilization of the linear Kawahara equation with localized damping. Asymptotic Anal.58 (2008) 229–252.
- C.F. Vasconcellos and P.N. da Silva, Erratum of the Stabilization of the linear Kawahara equation with localized damping. Asymptotic Anal. (to appear).
- E. Zuazua, Contrôlabilité Exacte de Quelques Modèles de Plaques en un Temps Arbitrairement Petit. Appendix in [13], 165–191.
- E. Zuazua, Exponential decay for the semilinear wave equation with locally distribued damping. Comm. Partial Diff. Eq.15 (1990) 205–235.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.