Displaying similar documents to “A frictionless contact algorithm for deformable bodies”

On a new computational algorithm for impacts of elastic bodies

Hynek Štekbauer, Ivan Němec, Rostislav Lang, Daniel Burkart, Jiří Vala (2022)

Applications of Mathematics

Similarity:

Computational modelling of contact problems is still one of the most difficult aspects of non-linear analysis in engineering mechanics. The article introduces an original efficient explicit algorithm for evaluation of impacts of bodies, satisfying the conservation of both momentum and energy exactly. The algorithm is described in its linearized 2-dimensional formulation in details, as open to numerous generalizations including 3-dimensional ones, and supplied by numerical examples obtained...

Numerical Modelling of Contact Elastic-Plastic Flows

N. M. Bessonov, S. F. Golovashchenko, V. A. Volpert (2009)

Mathematical Modelling of Natural Phenomena

Similarity:

Wilkins' method has been successfully used since early 60s for numerical simulation of high velocity contact elastic-plastic flows. The present work proposes some effective modifications of this method including more sophisticated material model including the Baushinger effect; modification of the algorithm based on correction of the initial configuration of a solid; a contact algorithm based on the idea of a mild contact.

Open and closed shear-walls in high-rise structural systems: Static and dynamic analysis

Alberto Carpinteri, Giuseppe Lacidogna, Giuseppe Nitti (2016)

Curved and Layered Structures

Similarity:

In the present paper, a General Algorithm is applied to the analysis of high-rise structures. This algorithm is to be used as a calculation tool in preliminary design; it allows to define the interaction between closed and open, straight or curved shear-walls, and the forces exchanged in structures subject to mainly horizontal loads. The analysis can be performed in both static and dynamic regimes, the mode shapes and the natural frequencies being assessed. This general formulation allows...

On a computational approach to multiple contacts / impacts of elastic bodies

Vala, Jiří, Rek, Václav

Similarity:

The analysis of dynamic contacts/impacts of several deformable bodies belongs to both theoretically and computationally complicated problems, because of the presence of unpleasant nonlinearities and of the need of effective contact detection. This paper sketches how such difficulties can be overcome, at least for a model problem with several elastic bodies, using i) the explicit time-discretization scheme and ii) the finite element technique adopted to contact evaluations together with...

Contact problem of two elastic bodies. III

Vladimír Janovský, Petr Procházka (1980)

Aplikace matematiky

Similarity:

The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.

New methods in collision of bodies analysis

Němec, Ivan, Vala, Jiří, Štekbauer, Hynek, Jedlička, Michal, Burkart, Daniel

Similarity:

The widely used method for solution of impacts of bodies, called the penalty method, is based on the contact force proportional to the length of the interpenetration of bodies. This method is regarded as unsatisfactory by the authors of this contribution, because of an inaccurate fulfillment of the energy conservation law and violation of the natural demand of impenetrability of bodies. Two non-traditional methods for the solution of impacts of bodies satisfy these demands exactly, or...

A frictionless contact algorithm for deformable bodies

Olivier Pantz (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This article is devoted to the presentation of a new contact algorithm for bodies undergoing finite deformations. We only address the kinematic aspect of the contact problem, that is the numerical treatment of the non-intersection constraint. In consequence, mechanical aspects like friction, adhesion or wear are not investigated and we restrict our analysis to the simplest frictionless case. On the other hand, our method allows us to treat contacts and self-contacts, thin or non-thin...

A Bermúdez–Moreno algorithm adapted to solve a viscoplastic problem in alloy solidification processes

P. Barral, P. Quintela, M. T. Sánchez (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The aim of this work is to present a computationally efficient algorithm to simulate the deformations suffered by a viscoplastic body in a solidification process. This type of problems involves a nonlinearity due to the considered thermo-elastic-viscoplastic law. In our previous papers, this difficulty has been solved by means of a duality method, known as Bermúdez–Moreno algorithm, involving a multiplier which was computed with a fixed point algorithm or a Newton method. In this paper,...