Displaying similar documents to “Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation”

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE's, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical...

An efficient linear numerical scheme for the Stefan problem, the porous medium equation and nonlinear cross-diffusion systems

Molati, Motlatsi, Murakawa, Hideki

Similarity:

This paper deals with nonlinear diffusion problems which include the Stefan problem, the porous medium equation and cross-diffusion systems. We provide a linear scheme for these nonlinear diffusion problems. The proposed numerical scheme has many advantages. Namely, the implementation is very easy and the ensuing linear algebraic systems are symmetric, which show low computational cost. Moreover, this scheme has the accuracy comparable to that of the wellstudied nonlinear schemes and...

On discontinuous Galerkin methods for nonlinear convection-diffusion problems and compressible flow

Vít Dolejší, Miloslav Feistauer, Christoph Schwab (2002)

Mathematica Bohemica

Similarity:

The paper is concerned with the discontinuous Galerkin finite element method for the numerical solution of nonlinear conservation laws and nonlinear convection-diffusion problems with emphasis on applications to the simulation of compressible flows. We discuss two versions of this method: (a) Finite volume discontinuous Galerkin method, which is a generalization of the combined finite volume—finite element method. Its advantage is the use of only one mesh (in contrast to the combined...

Behaviour of the support of the solution appearing in some nonlinear diffusion equation with absorption

Tomoeda, Kenji

Similarity:

Numerical experiments suggest interesting properties in the several fields of fluid dynamics, plasma physics and population dynamics. Among such properties, we may observe the interesting phenomena; that is, the repeated appearance and disappearance phenomena of the region penetrated by the fluid in the flow through a porous media with absorption. The model equation in two dimensional space is written in the form of the initial-boundary value problem for a nonlinear diffusion equation...

Transport of Pollutant in Shallow Water A Two Time Steps Kinetic Method

Emmanuel Audusse, Marie-Odile Bristeau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The aim of this paper is to present a finite volume kinetic method to compute the transport of a passive pollutant by a flow modeled by the shallow water equations using a new time discretization that allows large time steps for the pollutant computation. For the hydrodynamic part the kinetic solver ensures – even in the case of a non flat bottom – the preservation of the steady state of a lake at rest, the non-negativity of the water height and the existence of an entropy inequality....

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical...