Transport of Pollutant in Shallow Water A Two Time Steps Kinetic Method
Emmanuel Audusse; Marie-Odile Bristeau
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 37, Issue: 2, page 389-416
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- E. Audusse, M.O. Bristeau and B. Perthame, Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA Report, RR-3989 (2000), http://www.inria.fr/RRRT/RR-3989.html.
- A. Bermudez and M.E. Vasquez, Upwind methods for hyperbolic conservation laws with source terms. Comput. & Fluids23 (1994) 1049-1071.
- M.O. Bristeau and B. Coussin, Boundary conditions for the shallow water equations solved by kinetic schemes. INRIA Report, RR-4282 (2001), http://www.inria.fr/RRRT/RR-4282.html.
- M.O. Bristeau and B. Perthame, Transport of pollutant in shallow water using kinetic schemes. CEMRACS, ESAIM Proc. 10 (1999) 9-21, http://www.emath.fr/Maths/Proc/Vol.10.
- R. Eymard, T. Gallouet and R. Herbin, Finite volume methods, Handbook of numerical analysis, Vol. VIII, P.G. Ciarlet and J.L. Lions Eds., Amsterdam, North-Holland (2000).
- T. Gallouet, J.M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow water equations with topography. Comput. & Fluids32 (2003) 479-513.
- J.F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete Contin. Dynam. Systems 1 (2001) 89-102.
- E. Godlewski and P.A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag, New York, Appl. Math. Sci. 118 (1996).
- L. Gosse and A.Y. LeRoux, A well-balanced scheme designed for inhomogeneous scalar conservation laws. C. R. Acad. Sci. Paris Sér. I Math.323 (1996) 543-546.
- J.M. Hervouet, Hydrodynamique des écoulements à surface libre, apport de la méthode des éléments finis. EDF (2001).
- S. Jin, A steady state capturing method for hyperbolic system with geometrical source terms. ESAIM: M2AN35 (2001) 631-646.
- R.J. LeVêque, Numerical Methods for Conservation Laws. Second edition, ETH Zurich, Birkhauser, Lectures in Mathematics (1992).
- R.J. LeVêque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys.146 (1998) 346-365.
- L. Martin, Fonctionnement écologique de la Seine à l'aval de la station d'épuration d'Achères: données expérimentales et modélisation bidimensionnelle. Ph.D. Thesis, École des Mines de Paris, France (2001).
- B. Perthame, Kinetic formulations of conservation laws. Oxford University Press (2002).
- B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo38 (2001) 201-231.
- P.L. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms, in Nonlinear Hyperbolic Problems, C. Carasso, P.A. Raviart and D. Serre Eds., Berlin, Springer-Verlag, Lecture Notes in Math. 1270 (1987) 41-51.
- A.J.C. de Saint-Venant, Théorie du mouvement non permanent des eaux, avec application aux crues de rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris Sér. I Math.73 (1871) 147-154.
- J.J. Stoker, The formation of breakers and bores. Comput. Appl. Math. 1 (1948).
Citations in EuDML Documents
top- Olivier Bernard, Anne-Céline Boulanger, Marie-Odile Bristeau, Jacques Sainte-Marie, A 2D model for hydrodynamics and biology coupling applied to algae growth simulations
- Alina Chertock, Alexander Kurganov, On a hybrid finite-volume-particle method
- Alina Chertock, Alexander Kurganov, On a hybrid finite-volume-particle method
- Emmanuel Audusse, Marie-Odile Bristeau, Benoît Perthame, Jacques Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation
- Emmanuel Audusse, Marie-Odile Bristeau, Benoît Perthame, Jacques Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation