Displaying similar documents to “Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system”

Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system

Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Space-time approximations of the FitzHugh–Nagumo system of coupled semi-linear parabolic PDEs are examined. The schemes under consideration are discontinuous in time but conforming in space and of arbitrary order. Stability estimates are presented in the natural energy norms and at arbitrary times, under minimal regularity assumptions. Space-time error estimates of arbitrary order are derived, provided that the natural parabolic regularity...

Stability analysis of the space-time discontinuous Galerkin method for nonstationary nonlinear convection-diffusion problems

Balázsová, Monika, Feistauer, Miloslav, Hadrava, Martin, Kosík, Adam

Similarity:

This paper is concerned with the stability analysis of the space-time discontinuous Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion problems. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the discretization of diffusion terms and interior and boundary penalty. Then error estimates are briefly characterized. The main attention is paid to the investigation of unconditional stability of the method....

Mesh Refinement For Stabilized Convection Diffusion Equations

B. Achchab, M. El Fatini, A. Souissi (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We derive a residual a posteriori error estimates for the subscales stabilization of convection diffusion equation. The estimator yields upper bound on the error which is global and lower bound that is local

A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations

Gabriel R. Barrenechea, Volker John, Petr Knobloch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates...

Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system

Pierluigi Colli, Gianni Gilardi, Pavel Krejčí, Paolo Podio-Guidugli, Jürgen Sprekels (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful...

Inverse Problems for Parabolic Equation with Discontinuous Coefficients

V. Dinakar, N. Barani Balan, K. Balachandran (2017)

Nonautonomous Dynamical Systems

Similarity:

We consider the reaction-diffusion equation with discontinuities in the diffusion coefficient and the potential term. We start by deriving the Carleman estimate for the discontinuous reaction-diffusion operator which is deployed in the inverse problems of finding the stability result of the two discontinuous coefficients from the internal observations of the given parabolic equation.

An Adaptive Multi-level method for Convection Diffusion Problems

Martine Marion, Adeline Mollard (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this article we introduce an adaptive multi-level method in space and time for convection diffusion problems. The scheme is based on a multi-level spatial splitting and the use of different time-steps. The temporal discretization relies on the characteristics method. We derive an error estimate and design a corresponding adaptive algorithm. The efficiency of the multi-level method is illustrated by numerical experiments, in particular for a convection-dominated problem. ...