Bi-quotient maps and cartesian products of quotient maps
Annales de l'institut Fourier (1968)
- Volume: 18, Issue: 2, page 287-302
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMichael, Ernest. "Bi-quotient maps and cartesian products of quotient maps." Annales de l'institut Fourier 18.2 (1968): 287-302. <http://eudml.org/doc/73961>.
@article{Michael1968,
author = {Michael, Ernest},
journal = {Annales de l'institut Fourier},
keywords = {topology},
language = {eng},
number = {2},
pages = {287-302},
publisher = {Association des Annales de l'Institut Fourier},
title = {Bi-quotient maps and cartesian products of quotient maps},
url = {http://eudml.org/doc/73961},
volume = {18},
year = {1968},
}
TY - JOUR
AU - Michael, Ernest
TI - Bi-quotient maps and cartesian products of quotient maps
JO - Annales de l'institut Fourier
PY - 1968
PB - Association des Annales de l'Institut Fourier
VL - 18
IS - 2
SP - 287
EP - 302
LA - eng
KW - topology
UR - http://eudml.org/doc/73961
ER -
References
top- [1] A. ARHANGEL'SKIĭ, On a class of spaces containing all metric and all locally bi-compact spaces, Dokl. Akad. Nauk SSSR, 151 (1963), 751-754. (= Soviet Math. Dokl., 4 (1963), 1051-1055). Zbl0124.15801MR27 #2959
- [2] A. ARHANGEL'SKIῘ, Some types of factor mappings, and the relations between classes of topological spaces, Dokl. Akad. Nauk SSSR, 153 (1963), 743-746. (= Soviet Math. Dokl, 4 (1963), 1726-1729). Zbl0129.38103
- [3] A. ARHANGEL'SKIῘ, Mappings and spaces, Uspehi Mat. Nauk, 21 (1966), 133-184 (= Russian Math. Surveys, 21 (1966), 115-162). Zbl0171.43603
- [4] N. BOURBAKI, Topologie générale, Chapters 1 and 2, Hermann, 1961. Zbl0102.37603
- [5] R. BROWN, Ten topologies for X × Y, Quart. J. Math. Oxford Ser., (2) 14 (1963), 303-319. Zbl0113.37504MR28 #2516
- [6] R. BROWN, Function spaces and product topologies, Quart. J. Math. Oxford Ser., (2) 15 (1964), 238-250. Zbl0126.38503MR29 #2779
- [7] D. E. COHEN, Spaces with weak topology, Quart. J. Math., Oxford Ser., (2) 5 (1954), 77-80. Zbl0055.16103MR16,62c
- [8] E. HEWITT, A problem of set-theoretic topology, Duke Math. J., 10 (1943), 309-333. Zbl0060.39407MR5,46e
- [9] S. P. FRANKLIN, Spaces in which sequences suffice, Fund. Math., 57 (1965), 107-115. Zbl0132.17802MR31 #5184
- [10] S. P. FRANKLIN, Spaces in which sequences suffice II, Fund. Math., 61 (1967), 51-56. Zbl0168.43502MR36 #5882
- [11] E. MICHAEL, A note on closed maps and compact sets, Israel J. Math., 2 (1964), 173-176. Zbl0136.19303MR31 #1659
- [12] E. MICHAEL, Local compactness and cartesian products of quotient maps and k-spaces, (is printed just before this paper). Zbl0175.19703
- [13] J. MILNOR, Construction of universal bundles I, Ann. of Math., 63 (1956), 272-284. Zbl0071.17302MR17,994b
- [14] K. MORITA, On decomposition spaces of locally compact spaces, Proc. Japan Acad., 32 (1956), 544-548. Zbl0072.40402MR19,49d
- [15] N. STEENROD, A convenient category of topological spaces, Michigan Math. J., 14 (1967), 133-152. Zbl0145.43002MR35 #970
- [16] A. H. STONE, Metrisability of decomposition spaces, Proc. Amer. Math. Soc., 7 (1956), 690-700. Zbl0071.16001MR19,299b
- [17] J. H. C. WHITEHEAD, A note on a theorem of Borsuk, Bull. Amer. Math. Soc., 54 (1948), 1125-1132. Zbl0041.31901MR10,617c
Citations in EuDML Documents
top- C. M. Pareek, The inverse image of a metric space under a biquotient compact mapping
- Valéry Miškin, Peripherally compact mappings
- Themba Dube, Vesko M. Valov, Generalized tri-quotient maps and Čech-completeness
- James R. Boone, Frank Siwiec, Sequentially quotient mappings
- Friedhelm Schwarz, Sibylle Weck-Schwarz, On hereditary and product-stable quotient maps
- Yoshio Tanaka, Products of -spaces, and questions
- Yoshio Tanaka, Tanaka spaces and products of sequential spaces
- Szymon Dolecki, Michel Pillot, Topologically maximal convergences, accessibility, and covering maps
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.