On the critical pair theory in ℤ/pℤ
Yahya Ould Hamidoune, Oriol Serra, Gilles Zémor (2006)
Acta Arithmetica
Similarity:
Yahya Ould Hamidoune, Oriol Serra, Gilles Zémor (2006)
Acta Arithmetica
Similarity:
Yahya Ould Hamidoune (2011)
Acta Arithmetica
Similarity:
Halidias, N. (2004)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Li, Shujie, Su, Jiabao (1996)
Abstract and Applied Analysis
Similarity:
Cicortaş, Graţiela (2005)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Perera, Kanishka (1998)
Abstract and Applied Analysis
Similarity:
Janusz Gwoździewicz, Maciej Sękalski (2004)
Annales Polonici Mathematici
Similarity:
We construct a polynomial f:ℂ² → ℂ of degree 4k+2 with no critical points in ℂ² and with 2k critical values at infinity.
Kazantsev, Andrei V. (2001)
Lobachevskii Journal of Mathematics
Similarity:
Vannella, Giuseppina
Similarity:
M. Ndiaye, H. Giacomini (2000)
Extracta Mathematicae
Similarity:
Vladimir N. Grujić (2011)
The Teaching of Mathematics
Similarity:
Marc Carbonell, Jaume Llibre (1989)
Publicacions Matemàtiques
Similarity:
We classify the phase portraits of the cubic systems in the plane such that they do not have finite critical points, and the critical points on the equator of the Poincaré sphere are isolated and have linear part non-identically zero.
Zheng, Bo, Xiao, Huafeng, Shi, Haiping (2011)
Boundary Value Problems [electronic only]
Similarity:
Tero Harju, Dirk Nowotka (2010)
RAIRO - Theoretical Informatics and Applications
Similarity:
We investigate the density of critical factorizations of infinite sequences of words. The density of critical factorizations of a word is the ratio between the number of positions that permit a critical factorization, and the number of all positions of a word. We give a short proof of the Critical Factorization Theorem and show that the maximal number of noncritical positions of a word between two critical ones is less than the period of that word. Therefore, we consider only...