Displaying similar documents to “Invertible polynomial mappings via Newton non-degeneracy”

Nearly irreducibility of polynomials and the Newton diagrams

Mateusz Masternak (2020)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

Let f be a polynomial in two complex variables. We say that f is nearly irreducible if any two nonconstant polynomial factors of f have a common zero in C2. In the paper we give a criterion of nearly irreducibility for a given polynomial f in terms of its Newton diagram.

A general semilocal convergence result for Newton’s method under centered conditions for the second derivative

José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to nonlinear integral equations of mixed Hammerstein...

A general semilocal convergence result for Newton’s method under centered conditions for the second derivative

José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to ...