On the Condition Number of Boundary Integral Operators for the Exterior Dirichlet Problem for the Helmholtz Equation.
R. Kreß, W.T. Spassov (1983)
Numerische Mathematik
Similarity:
R. Kreß, W.T. Spassov (1983)
Numerische Mathematik
Similarity:
Zhengping Wang, Huan-Song Zhou (2009)
Journal of the European Mathematical Society
Similarity:
Z. Zhao, F. Gesztesy (1994)
Mathematische Zeitschrift
Similarity:
H. J. Bremermann (1967)
Colloquium Mathematicae
Similarity:
G. Nakamura, Z. Sun, G. Uhlmann (1995)
Mathematische Annalen
Similarity:
Hongfen Yuan, Valery V. Karachik (2022)
Czechoslovak Mathematical Journal
Similarity:
Applying the method of normalized systems of functions we construct solutions of the generalized Dirichlet problem for the iterated slice Dirac operator in Clifford analysis. This problem is a natural generalization of the Dirichlet problem.
Frédéric Bayart (2004)
Acta Arithmetica
Similarity:
Giuseppe Maria Coclite (2002)
Annales Polonici Mathematici
Similarity:
We prove the existence of a sequence of radial solutions with negative energy of the Schrödinger-Maxwell equations under the action of a negative potential.
H. M. Bui, D. R. Heath-Brown (2010)
Acta Arithmetica
Similarity:
Robert Altmann (2014)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class...
A. Mallik (1981)
Acta Arithmetica
Similarity:
Tero Kilpeläinen, Jan Maly (1990)
Manuscripta mathematica
Similarity:
Zhefeng Xu, Wenpeng Zhang (2007)
Acta Arithmetica
Similarity:
Mošová, Vratislava
Similarity: