Moving Dirichlet boundary conditions
- Volume: 48, Issue: 6, page 1859-1876
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topAltmann, Robert. "Moving Dirichlet boundary conditions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.6 (2014): 1859-1876. <http://eudml.org/doc/273241>.
@article{Altmann2014,
abstract = {This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second order initial-boundary value problems. For the semi-discretization in space, a finite element scheme is presented which satisfies a discrete stability condition. Because of the saddle point structure of the underlying PDE, the resulting system is a DAE of index 3.},
author = {Altmann, Robert},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Dirichlet boundary conditions; operator DAE; inf-sup condition; wave equation; elastodynamics; moving Dirichlet boundary condition; weak constraint; saddle point formulation; finite elements; Lagrange multiplier method},
language = {eng},
number = {6},
pages = {1859-1876},
publisher = {EDP-Sciences},
title = {Moving Dirichlet boundary conditions},
url = {http://eudml.org/doc/273241},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Altmann, Robert
TI - Moving Dirichlet boundary conditions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 6
SP - 1859
EP - 1876
AB - This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second order initial-boundary value problems. For the semi-discretization in space, a finite element scheme is presented which satisfies a discrete stability condition. Because of the saddle point structure of the underlying PDE, the resulting system is a DAE of index 3.
LA - eng
KW - Dirichlet boundary conditions; operator DAE; inf-sup condition; wave equation; elastodynamics; moving Dirichlet boundary condition; weak constraint; saddle point formulation; finite elements; Lagrange multiplier method
UR - http://eudml.org/doc/273241
ER -
References
top- [1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003). Zbl1098.46001MR2424078
- [2] R. Altmann. Index reduction for operator differential-algebraic equations in elastodynamics. Z. Angew. Math. Mech. (ZAMM) 93 (2013) 648–664. Zbl1321.74007MR3105029
- [3] R. Altmann. Modeling flexible multibody systems by moving Dirichlet boundary conditions. In Proc. of Multibody Dynamics 2013 - ECCOMAS Thematic Conference, Zagreb, Croatia, July 1–4 (2013).
- [4] M. Arnold and B. Simeon, The simulation of pantograph and catenary: a PDAE approach. Preprint (1990), Technische Universität Darmstadt, Germany (1998).
- [5] M. Arnold and B. Simeon, Pantograph and catenary dynamics: A benchmark problem and its numerical solution. Appl. Numer. Math.34 (2000) 345–362. Zbl0964.65101MR1782540
- [6] I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math.20 (1973) 179–192. Zbl0258.65108MR359352
- [7] I. Babuška and G.N. Gatica, On the mixed finite element method with Lagrange multipliers. Numer. Meth. Part. D. E.19 (2003) 192–210. Zbl1021.65056MR1958060
- [8] F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. Doi:10.1007/s002110050468. Zbl0944.65114MR1730018
- [9] D. Braess, Finite Elements – Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, New York (2007). Zbl1118.65117
- [10] J.H. Bramble, The Lagrange multiplier method for Dirichlet’s problem. Math. Comput.37 (1981) 1–11. Zbl0477.65077MR616356
- [11] S. C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008). Zbl0804.65101MR2373954
- [12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
- [13] F.J. Cavalieri, A. Cardona, V.D. Fachinotti and J. Risso, A finite element formulation for nonlinear 3D contact problems. Mecánica Comput. XXVI(16) (2007) 1357–1372.
- [14] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Zbl0511.65078MR520174
- [15] E. Emmrich and D. Šiška, Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization. Technical report, University of Liverpool (2012). Zbl1317.47067
- [16] L.C. Evans, Partial Differential Equations, 2nd edn. American Mathematical Society (AMS). Providence (1998). Zbl1194.35001
- [17] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). Zbl0804.28001MR1158660
- [18] M. Géradin and A. Cardona, Flexible Multibody Dynamics: A Finite Element Approach. John Wiley, Chichester (2001).
- [19] J.A. Griepentrog, K. Gröger, H.-C. Kaiser and J. Rehberg, Interpolation for function spaces related to mixed boundary value problems. Math. Nachr.241 (2002) 110–120. Zbl1010.46021MR1912381
- [20] B. Gustafsson, High Order Difference Methods for Time Dependent PDE. Springer-Verlag, Berlin (2008). Zbl1146.65064MR2380849
- [21] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society (EMS), Zürich (2006). Zbl1095.34004MR2225970
- [22] J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications. Vol. 1. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968). Zbl0165.10801
- [23] J.-L. Lions and W.A. Strauss, Some non-linear evolution equations. Bull. Soc. Math. France93 (1965) 43–96. Zbl0132.10501MR199519
- [24] M.K. Lipinski, A posteriori Fehlerschätzer für Sattelpunktsformulierungen nicht-homogener Randwertprobleme. Ph.D thesis, Ruhr Universität Bochum (2004). Zbl1192.65143
- [25] J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Masson et Cie, Éditeurs, Paris (1967). Zbl1225.35003MR227584
- [26] L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal.5 (1960) 286–292. Zbl0099.08402MR117419
- [27] G. Poetsch, J. Evans, R. Meisinger, W. Kortüm, W. Baldauf, A. Veitl and J. Wallaschek, Pantograph/catenary dynamics and control. Vehicle System Dynamics28 (1997) 159–195.
- [28] A.A. Shabana, Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005). Zbl1202.70001
- [29] B. Simeon, On Lagrange multipliers in flexible multibody dynamics. Comput. Method. Appl. M195 (2006) 6993–7005. Zbl1120.74517MR2258325
- [30] B. Simeon, Computational flexible multibody dynamics. A differential-algebraic approach. Differential-Algebraic Equations Forum. Springer-Verlag, Berlin (2013). Zbl1279.70002MR3086702
- [31] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer-Verlag, New York (2008). Zbl1153.65302MR2361676
- [32] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Stuttgart (1996). Zbl0853.65108
- [33] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). Zbl0623.35006MR895589
- [34] E. Zeidler, Nonlinear Functional Analysis and its Applications IIa: Linear Monotone Operators. Springer-Verlag, New York (1990). Zbl0684.47029MR1033497
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.