Moving Dirichlet boundary conditions

Robert Altmann

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 6, page 1859-1876
  • ISSN: 0764-583X

Abstract

top
This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second order initial-boundary value problems. For the semi-discretization in space, a finite element scheme is presented which satisfies a discrete stability condition. Because of the saddle point structure of the underlying PDE, the resulting system is a DAE of index 3.

How to cite

top

Altmann, Robert. "Moving Dirichlet boundary conditions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.6 (2014): 1859-1876. <http://eudml.org/doc/273241>.

@article{Altmann2014,
abstract = {This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second order initial-boundary value problems. For the semi-discretization in space, a finite element scheme is presented which satisfies a discrete stability condition. Because of the saddle point structure of the underlying PDE, the resulting system is a DAE of index 3.},
author = {Altmann, Robert},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Dirichlet boundary conditions; operator DAE; inf-sup condition; wave equation; elastodynamics; moving Dirichlet boundary condition; weak constraint; saddle point formulation; finite elements; Lagrange multiplier method},
language = {eng},
number = {6},
pages = {1859-1876},
publisher = {EDP-Sciences},
title = {Moving Dirichlet boundary conditions},
url = {http://eudml.org/doc/273241},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Altmann, Robert
TI - Moving Dirichlet boundary conditions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 6
SP - 1859
EP - 1876
AB - This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second order initial-boundary value problems. For the semi-discretization in space, a finite element scheme is presented which satisfies a discrete stability condition. Because of the saddle point structure of the underlying PDE, the resulting system is a DAE of index 3.
LA - eng
KW - Dirichlet boundary conditions; operator DAE; inf-sup condition; wave equation; elastodynamics; moving Dirichlet boundary condition; weak constraint; saddle point formulation; finite elements; Lagrange multiplier method
UR - http://eudml.org/doc/273241
ER -

References

top
  1. [1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003). Zbl1098.46001MR2424078
  2. [2] R. Altmann. Index reduction for operator differential-algebraic equations in elastodynamics. Z. Angew. Math. Mech. (ZAMM) 93 (2013) 648–664. Zbl1321.74007MR3105029
  3. [3] R. Altmann. Modeling flexible multibody systems by moving Dirichlet boundary conditions. In Proc. of Multibody Dynamics 2013 - ECCOMAS Thematic Conference, Zagreb, Croatia, July 1–4 (2013). 
  4. [4] M. Arnold and B. Simeon, The simulation of pantograph and catenary: a PDAE approach. Preprint (1990), Technische Universität Darmstadt, Germany (1998). 
  5. [5] M. Arnold and B. Simeon, Pantograph and catenary dynamics: A benchmark problem and its numerical solution. Appl. Numer. Math.34 (2000) 345–362. Zbl0964.65101MR1782540
  6. [6] I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math.20 (1973) 179–192. Zbl0258.65108MR359352
  7. [7] I. Babuška and G.N. Gatica, On the mixed finite element method with Lagrange multipliers. Numer. Meth. Part. D. E.19 (2003) 192–210. Zbl1021.65056MR1958060
  8. [8] F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. Doi:10.1007/s002110050468. Zbl0944.65114MR1730018
  9. [9] D. Braess, Finite Elements – Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, New York (2007). Zbl1118.65117
  10. [10] J.H. Bramble, The Lagrange multiplier method for Dirichlet’s problem. Math. Comput.37 (1981) 1–11. Zbl0477.65077MR616356
  11. [11] S. C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008). Zbl0804.65101MR2373954
  12. [12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
  13. [13] F.J. Cavalieri, A. Cardona, V.D. Fachinotti and J. Risso, A finite element formulation for nonlinear 3D contact problems. Mecánica Comput. XXVI(16) (2007) 1357–1372. 
  14. [14] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Zbl0511.65078MR520174
  15. [15] E. Emmrich and D. Šiška, Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization. Technical report, University of Liverpool (2012). Zbl1317.47067
  16. [16] L.C. Evans, Partial Differential Equations, 2nd edn. American Mathematical Society (AMS). Providence (1998). Zbl1194.35001
  17. [17] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). Zbl0804.28001MR1158660
  18. [18] M. Géradin and A. Cardona, Flexible Multibody Dynamics: A Finite Element Approach. John Wiley, Chichester (2001). 
  19. [19] J.A. Griepentrog, K. Gröger, H.-C. Kaiser and J. Rehberg, Interpolation for function spaces related to mixed boundary value problems. Math. Nachr.241 (2002) 110–120. Zbl1010.46021MR1912381
  20. [20] B. Gustafsson, High Order Difference Methods for Time Dependent PDE. Springer-Verlag, Berlin (2008). Zbl1146.65064MR2380849
  21. [21] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society (EMS), Zürich (2006). Zbl1095.34004MR2225970
  22. [22] J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications. Vol. 1. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968). Zbl0165.10801
  23. [23] J.-L. Lions and W.A. Strauss, Some non-linear evolution equations. Bull. Soc. Math. France93 (1965) 43–96. Zbl0132.10501MR199519
  24. [24] M.K. Lipinski, A posteriori Fehlerschätzer für Sattelpunktsformulierungen nicht-homogener Randwertprobleme. Ph.D thesis, Ruhr Universität Bochum (2004). Zbl1192.65143
  25. [25] J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Masson et Cie, Éditeurs, Paris (1967). Zbl1225.35003MR227584
  26. [26] L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal.5 (1960) 286–292. Zbl0099.08402MR117419
  27. [27] G. Poetsch, J. Evans, R. Meisinger, W. Kortüm, W. Baldauf, A. Veitl and J. Wallaschek, Pantograph/catenary dynamics and control. Vehicle System Dynamics28 (1997) 159–195. 
  28. [28] A.A. Shabana, Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005). Zbl1202.70001
  29. [29] B. Simeon, On Lagrange multipliers in flexible multibody dynamics. Comput. Method. Appl. M195 (2006) 6993–7005. Zbl1120.74517MR2258325
  30. [30] B. Simeon, Computational flexible multibody dynamics. A differential-algebraic approach. Differential-Algebraic Equations Forum. Springer-Verlag, Berlin (2013). Zbl1279.70002MR3086702
  31. [31] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer-Verlag, New York (2008). Zbl1153.65302MR2361676
  32. [32] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Stuttgart (1996). Zbl0853.65108
  33. [33] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). Zbl0623.35006MR895589
  34. [34] E. Zeidler, Nonlinear Functional Analysis and its Applications IIa: Linear Monotone Operators. Springer-Verlag, New York (1990). Zbl0684.47029MR1033497

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.