Displaying similar documents to “Extreme value distributions for dependent jointly ln,p-symmetrically distributed random variables”

Exact distributions of order statistics of dependent random variables from ln,p-symmetric sample distributions, n ∈ {3,4}

K. Müller, W.-D. Richter (2016)

Dependence Modeling

Similarity:

Integral representations of the exact distributions of order statistics are derived in a geometric way when three or four random variables depend on each other as the components of continuous ln,psymmetrically distributed random vectors do, n ∈ {3,4}, p > 0. Once the representations are implemented in a computer program, it is easy to change the density generator of the ln,p-symmetric distribution with another one for newly evaluating the distribution of interest. For two groups of...

Exact distributions of order statistics from ln,p-symmetric sample distributions

K. Müller, W.-D. Richter (2017)

Dependence Modeling

Similarity:

We derive the exact distributions of order statistics from a finite number of, in general, dependent random variables following a joint ln,p-symmetric distribution. To this end,we first review the special cases of order statistics fromspherical aswell as from p-generalized Gaussian sample distributions from the literature. To study the case of general ln,p-dependence, we use both single-out and cone decompositions of the events in the sample space that correspond to the cumulative distribution...

On a general structure of the bivariate FGM type distributions

Sayed Mohsen Mirhosseini, Mohammad Amini, Ali Dolati (2015)

Applications of Mathematics

Similarity:

In this paper, we study a general structure for the so-called Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions. Through examples we show how to use the proposed structure to study dependence properties of the FGM type distributions by a general approach.