Displaying similar documents to “On some characterizations of strong power graphs of finite groups”

Characterizations of the Family of All Generalized Line Graphs-Finite and Infinite-and Classification of the Family of All Graphs Whose Least Eigenvalues ≥ −2

Gurusamy Rengasamy Vijayakumar (2013)

Discussiones Mathematicae Graph Theory

Similarity:

The infimum of the least eigenvalues of all finite induced subgraphs of an infinite graph is defined to be its least eigenvalue. In [P.J. Cameron, J.M. Goethals, J.J. Seidel and E.E. Shult, Line graphs, root systems, and elliptic geometry, J. Algebra 43 (1976) 305-327], the class of all finite graphs whose least eigenvalues ≥ −2 has been classified: (1) If a (finite) graph is connected and its least eigenvalue is at least −2, then either it is a generalized line graph or it is represented...

Some properties of the distance Laplacian eigenvalues of a graph

Mustapha Aouchiche, Pierre Hansen (2014)

Czechoslovak Mathematical Journal

Similarity:

The distance Laplacian of a connected graph G is defined by = Diag ( Tr ) - 𝒟 , where 𝒟 is the distance matrix of G , and Diag ( Tr ) is the diagonal matrix whose main entries are the vertex transmissions in G . The spectrum of is called the distance Laplacian spectrum of G . In the present paper, we investigate some particular distance Laplacian eigenvalues. Among other results, we show that the complete graph is the unique graph with only two distinct distance Laplacian eigenvalues. We establish some properties...