Displaying similar documents to “On the matrix negative Pell equation”

Nested matrices and inverse M -matrices

Jeffrey L. Stuart (2015)

Czechoslovak Mathematical Journal

Similarity:

Given a sequence of real or complex numbers, we construct a sequence of nested, symmetric matrices. We determine the L U - and Q R -factorizations, the determinant and the principal minors for such a matrix. When the sequence is real, positive and strictly increasing, the matrices are strictly positive, inverse M -matrices with symmetric, irreducible, tridiagonal inverses.

Circulant matrices with orthogonal rows and off-diagonal entries of absolute value 1

Daniel Uzcátegui Contreras, Dardo Goyeneche, Ondřej Turek, Zuzana Václavíková (2021)

Communications in Mathematics

Similarity:

It is known that a real symmetric circulant matrix with diagonal entries d 0 , off-diagonal entries ± 1 and orthogonal rows exists only of order 2 d + 2 (and trivially of order 1 ) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries d 0 and any complex entries of absolute value 1 off the diagonal. As a particular case, we consider...

Nonsingularity, positive definiteness, and positive invertibility under fixed-point data rounding

Jiří Rohn (2007)

Applications of Mathematics

Similarity:

For a real square matrix A and an integer d 0 , let A ( d ) denote the matrix formed from A by rounding off all its coefficients to d decimal places. The main problem handled in this paper is the following: assuming that A ( d ) has some property, under what additional condition(s) can we be sure that the original matrix A possesses the same property? Three properties are investigated: nonsingularity, positive definiteness, and positive invertibility. In all three cases it is shown that there exists...

G-matrices, J -orthogonal matrices, and their sign patterns

Frank J. Hall, Miroslav Rozložník (2016)

Czechoslovak Mathematical Journal

Similarity:

A real matrix A is a G-matrix if A is nonsingular and there exist nonsingular diagonal matrices D 1 and D 2 such that A - T = D 1 A D 2 , where A - T denotes the transpose of the inverse of A . Denote by J = diag ( ± 1 ) a diagonal (signature) matrix, each of whose diagonal entries is + 1 or - 1 . A nonsingular real matrix Q is called J -orthogonal if Q T J Q = J . Many connections are established between these matrices. In particular, a matrix A is a G-matrix if and only if A is diagonally (with positive diagonals) equivalent to a column permutation...

Linear preservers of row-dense matrices

Sara M. Motlaghian, Ali Armandnejad, Frank J. Hall (2016)

Czechoslovak Mathematical Journal

Similarity:

Let 𝐌 m , n be the set of all m × n real matrices. A matrix A 𝐌 m , n is said to be row-dense if there are no zeros between two nonzero entries for every row of this matrix. We find the structure of linear functions T : 𝐌 m , n 𝐌 m , n that preserve or strongly preserve row-dense matrices, i.e., T ( A ) is row-dense whenever A is row-dense or T ( A ) is row-dense if and only if A is row-dense, respectively. Similarly, a matrix A 𝐌 n , m is called a column-dense matrix if every column of A is a column-dense vector. At the end, the structure...

Analytic aspects of the circulant Hadamard conjecture

Teodor Banica, Ion Nechita, Jean-Marc Schlenker (2014)

Annales mathématiques Blaise Pascal

Similarity:

We investigate the problem of counting the real or complex Hadamard matrices which are circulant, by using analytic methods. Our main observation is the fact that for | q 0 | = ... = | q N - 1 | = 1 the quantity Φ = i + k = j + l q i q k q j q l satisfies Φ N 2 , with equality if and only if q = ( q i ) is the eigenvalue vector of a rescaled circulant complex Hadamard matrix. This suggests three analytic problems, namely: (1) the brute-force minimization of Φ , (2) the study of the critical points of Φ , and (3) the computation of the moments of Φ . We explore here...

Linear preservers of rc-majorization on matrices

Mohammad Soleymani (2024)

Czechoslovak Mathematical Journal

Similarity:

Let A , B be n × m matrices. The concept of matrix majorization means the j th column of A is majorized by the j th column of B and this is done for all j by a doubly stochastic matrix D . We define rc-majorization that extended matrix majorization to columns and rows of matrices. Also, the linear preservers of rc-majorization will be characterized.

Some properties complementary to Brualdi-Li matrices

Chuanlong Wang, Xuerong Yong (2015)

Czechoslovak Mathematical Journal

Similarity:

In this paper we derive new properties complementary to an 2 n × 2 n Brualdi-Li tournament matrix B 2 n . We show that B 2 n has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of B 2 n is also determined. Related results obtained in previous articles are proven to be corollaries.