The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A procedure for designing stabilizing output feedback controllers”

Static output feedback controller design

Vojtech Veselý (2001)

Kybernetika

Similarity:

In this paper new necessary and sufficient conditions for static output feedback stabilizability for continuous and discrete time linear time invariant systems have been proposed. These conditions form the basis for the procedure of static output feedback controller design proposed in this paper. The proposed LMI based algorithms are computationally simple and tightly connected with the Lyapunov stability theory and LQ optimal state feedback design. The structure of the output feedback...

A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems

Danica Rosinová, Vojtech Veselý, Vladimír Kučera (2003)

Kybernetika

Similarity:

Necessary and sufficient conditions for a discrete-time system to be stabilizable via static output feedback are established. The conditions include a Riccati equation. An iterative as well as non-iterative LMI based algorithm with guaranteed cost for the computation of output stabilizing feedback gains is proposed and introduces the novel LMI approach to compute the stabilizing output feedback gain matrix. The results provide the discrete- time counterpart to the results by Kučera and...

Stabilization of second-order systems by non-linear feedback

Paweł Skruch (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

A stabilization problem of second-order systems by non-linear feedback is considered. We discuss the case when only position feedback is available. The non-linear stabilizer is constructed by placing actuators and sensors in the same location and by using a parallel compensator. The stability of the closed-loop system is proved by LaSalle's theorem. The distinctive feature of the solution is that no transformation to a first-order system is invoked. The results of analytic and numerical...