The universality theorem for Hecke L-functions
Hidehiko Mishou (2003)
Acta Arithmetica
Similarity:
Hidehiko Mishou (2003)
Acta Arithmetica
Similarity:
David E. ROHRLICH (1992)
Forum mathematicum
Similarity:
Eknath Ghate (2002)
Acta Arithmetica
Similarity:
Cristina M. Ballantine, John A. Rhodes, Thomas R. Shemanske (2004)
Acta Arithmetica
Similarity:
Winfried Kohnen (1992)
Mathematische Annalen
Similarity:
Lascoux, Alain (1998)
Documenta Mathematica
Similarity:
W. Kohnen, J. Sengupta (2001)
Acta Arithmetica
Similarity:
Golubeva, E.P. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Uwe Weselmann (1989)
Inventiones mathematicae
Similarity:
W. Kohnen (1985)
Journal für die reine und angewandte Mathematik
Similarity:
Winfried Kohnen, Jyoti Sengupta (2007)
Acta Arithmetica
Similarity:
Günter Köhler (1988)
Mathematische Zeitschrift
Similarity:
Nobushige Kurokawa (1978)
Inventiones mathematicae
Similarity:
Golubeva, E.P. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
B. Conrey, H. Iwaniec (2002)
Acta Arithmetica
Similarity:
A. Sankaranarayanan (2003)
Acta Arithmetica
Similarity:
D. Goundaroulis, J. Juyumaya, A. Kontogeorgis, S. Lambropoulou (2014)
Banach Center Publications
Similarity:
We define the Yokonuma-Temperley-Lieb algebra as a quotient of the Yokonuma-Hecke algebra over a two-sided ideal generated by an expression analogous to the one of the classical Temperley-Lieb algebra. The main theorem provides necessary and sufficient conditions for the Markov trace defined on the Yokonuma-Hecke algebra to pass through to the quotient algebra, leading to a sequence of knot invariants which coincide with the Jones polynomial.
J. LEHNER, A.O.L. ATKIN (1970)
Mathematische Annalen
Similarity:
Aloys Krieg (1990)
Mathematische Zeitschrift
Similarity:
Kirill Vankov (2011)
Journal de Théorie des Nombres de Bordeaux
Similarity:
Shimura conjectured the rationality of the generating series for Hecke operators for the symplectic group of genus . This conjecture was proved by Andrianov for arbitrary genus , but the explicit expression was out of reach for genus higher than 3. For genus , we explicitly compute the rational fraction in this conjecture. Using formulas for images of double cosets under the Satake spherical map, we first compute the sum of the generating series, which is a rational fraction with...