Displaying similar documents to “On the error term in Weyl's law for Heisenberg manifolds”

Weyl submersions of Weyl manifolds

Fumio Narita (2007)

Colloquium Mathematicae

Similarity:

We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein-Weyl structure. Moreover, we investigate the Einstein-Weyl structure of canonical variations of the total space with Einstein-Weyl structure.

A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II

Werner Nowak (2009)

Open Mathematics

Similarity:

This article is concerned with estimations from below for the remainder term in Weyl’s law for the spectral counting function of certain rational (2ℓ + 1)-dimensional Heisenberg manifolds. Concentrating on the case of odd ℓ, it continues the work done in part I [21] which dealt with even ℓ.

A comparison of some a posteriori error estimates for fourth order problems

Segeth, Karel

Similarity:

A lot of papers and books analyze analytical a posteriori error estimates from the point of view of robustness, guaranteed upper bounds, global efficiency, etc. At the same time, adaptive finite element methods have acquired the principal position among algorithms for solving differential problems in many physical and technical applications. In this survey contribution, we present and compare, from the viewpoint of adaptive computation, several recently published error estimation procedures...

Regional observation and sensors

Abdelhaq El Jai, Houria Hamzaoui (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

The purpose of this short paper is to provide original results related to the choice of the number of sensors and their supports for general distributed parameter systems. We introduce the notion of extended sensors and we show that the observation error decreases when the support of a sensor is widened. We also show that the observation error decreases when the number of sensors increases.

Weyl numbers versus Z-Weyl numbers

Bernd Carl, Andreas Defant, Doris Planer (2014)

Studia Mathematica

Similarity:

Given an infinite-dimensional Banach space Z (substituting the Hilbert space ℓ₂), the s-number sequence of Z-Weyl numbers is generated by the approximation numbers according to the pattern of the classical Weyl numbers. We compare Weyl numbers with Z-Weyl numbers-a problem originally posed by A. Pietsch. We recover a result of Hinrichs and the first author showing that the Weyl numbers are in a sense minimal. This emphasizes the outstanding role of Weyl numbers within the theory of eigenvalue...