Tame kernels of quintic cyclic fields
Xia Wu (2008)
Acta Arithmetica
Similarity:
Xia Wu (2008)
Acta Arithmetica
Similarity:
Haiyan Zhou (2006)
Acta Arithmetica
Similarity:
Frank Gerth (1991)
Manuscripta mathematica
Similarity:
Hiroo Miki (1981)
Journal für die reine und angewandte Mathematik
Similarity:
Yakovlev, A.V. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
C. Greither, R. Kučera (2004)
Acta Arithmetica
Similarity:
Xuejun Guo (2007)
Acta Arithmetica
Similarity:
Masato Kurihara (2005)
Acta Arithmetica
Similarity:
Richard Massy (2009)
Acta Arithmetica
Similarity:
Kurt Girstmair (1993)
Acta Arithmetica
Similarity:
Maria Jankiewicz (1974)
Applicationes Mathematicae
Similarity:
David J. Grynkiewicz (2006)
Acta Arithmetica
Similarity:
Haiyan Zhou (2012)
Acta Arithmetica
Similarity:
Stéphane Louboutin (1998)
Colloquium Mathematicae
Similarity:
It is known that there are only finitely many imaginary abelian number fields with class numbers equal to their genus class numbers. Here, we determine all the imaginary cyclic sextic fields with class numbers equal to their genus class numbers.
D. Martinalis, L. Schneps (1993)
Manuscripta mathematica
Similarity:
Edjvet, Martin, Hammond, Paul, Thomas, Nathan (2001)
Experimental Mathematics
Similarity:
Toru Nakahara (1982)
Monatshefte für Mathematik
Similarity: