The imaginary cyclic sextic fields with class numbers equal to their genus class numbers
Colloquium Mathematicae (1998)
- Volume: 75, Issue: 2, page 205-212
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [Gra] M. N. Gras, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de , J. Reine Angew. Math. 277 (1975), 89-116.
- [Lou 1] S. Louboutin, Minoration au point 1 des fonctions et détermination des corps sextiques abéliens totalement imaginaires principaux, Acta Arith. 62 (1992), 109-124.
- [Lou 2] S. Louboutin, Majorations explicites de , C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 11-14.
- [Lou 3] S. Louboutin, Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc. 120 (1994), 425-434. Zbl0795.11058
- [Lou 4] S. Louboutin, A finiteness theorem for imaginary abelian number fields, Manuscripta Math. 91 (1996), 343-352. Zbl0869.11089
- [Lou 5] S. Louboutin, The nonquadratic imaginary cyclic fields of -power degrees with class numbers equal to their genus numbers, Proc. Amer. Math. Soc., to appear. Zbl0919.11071
- [Low] M. E. Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith. 14 (1968), 117-140. Zbl0207.05602
- [Miy] I. Miyada, On imaginary abelian number fields of type with one class in each genus, Manuscripta Math. 88 (1995), 535-540. Zbl0851.11061
- [PK] Y.-H. Park and S.-H. Kwon, Determination of all imaginary abelian sextic number fields with class number , Acta Arith., to appear.
- [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982.
- [Yam] K. Yamamura, The determination of the imaginary abelian number fields with class-number one, Math. Comp. 62 (1994), 899-921. Zbl0798.11046