The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Bounds for the smallest integer point of a rational curve”

Rational Bézier curves with infinitely many integral points

Petroula Dospra (2023)

Archivum Mathematicum

Similarity:

In this paper we consider rational Bézier curves with control points having rational coordinates and rational weights, and we give necessary and sufficient conditions for such a curve to have infinitely many points with integer coefficients. Furthermore, we give algorithms for the construction of these curves and the computation of theirs points with integer coefficients.

Trivial points on towers of curves

Xavier Xarles (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In order to study the behavior of the points in a tower of curves, we introduce and study trivial points on towers of curves, and we discuss their finiteness over number fields. We relate the problem of proving that the only rational points are the trivial ones at some level of the tower, to the unboundeness of the gonality of the curves in the tower, which we show under some hypothesis.

Counting rational points near planar curves

Ayla Gafni (2014)

Acta Arithmetica

Similarity:

We find an asymptotic formula for the number of rational points near planar curves. More precisely, if f:ℝ → ℝ is a sufficiently smooth function defined on the interval [η,ξ], then the number of rational points with denominator no larger than Q that lie within a δ-neighborhood of the graph of f is shown to be asymptotically equivalent to (ξ-η)δQ².

A Note on the Rational Cuspidal Curves

Piotr Nayar, Barbara Pilat (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

In this short note we give an elementary combinatorial argument, showing that the conjecture of J. Fernández de Bobadilla, I. Luengo-Velasco, A. Melle-Hernández and A. Némethi [Proc. London Math. Soc. 92 (2006), 99-138, Conjecture 1] follows from Theorem 5.4 of Brodzik and Livingston [arXiv:1304.1062] in the case of rational cuspidal curves with two critical points.