Solving an exponential Diophantine equation
Mario Huicochea (2010)
Acta Arithmetica
Similarity:
Mario Huicochea (2010)
Acta Arithmetica
Similarity:
Acu, Dumitru (2001)
General Mathematics
Similarity:
Yu. F. Bilu, M. Kulkarni, B. Sury (2004)
Acta Arithmetica
Similarity:
E. Herrmann, I. Járási, A. Pethő (2004)
Acta Arithmetica
Similarity:
Susil Kumar Jena (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
Csaba Rakaczki (2003)
Acta Arithmetica
Similarity:
J. H. E. Cohn (2003)
Acta Arithmetica
Similarity:
Muriefah, Fadwa S.Abu, Bugeaud, Yann (2006)
Revista Colombiana de Matemáticas
Similarity:
Samir Siksek (2009)
Journal de Théorie des Nombres de Bordeaux
Similarity:
These are expository notes that accompany my talk at the 25th Journées Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. I aim to shed light on the following two questions:
Maohua Le (2001)
Acta Arithmetica
Similarity:
Leo J. Alex, Lorraine L. Foster (1995)
Forum mathematicum
Similarity:
Acu, Dumitru (2007)
General Mathematics
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
Shin-ichi Katayama, Claude Levesque (2003)
Acta Arithmetica
Similarity:
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity: