# Diophantine equations after Fermat’s last theorem

Samir Siksek^{[1]}

- [1] Mathematics Institute University of Warwick Coventry, CV4 7AL, United Kingdom

Journal de Théorie des Nombres de Bordeaux (2009)

- Volume: 21, Issue: 2, page 423-434
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topSiksek, Samir. "Diophantine equations after Fermat’s last theorem." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 423-434. <http://eudml.org/doc/10889>.

@article{Siksek2009,

abstract = {These are expository notes that accompany my talk at the 25th Journées Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. I aim to shed light on the following two questions:(i)Given a Diophantine equation, what information can be obtained by following the strategy of Wiles’ proof of Fermat’s Last Theorem?(ii)Is it useful to combine this approach with traditional approaches to Diophantine equations: Diophantine approximation, arithmetic geometry, ...?},

affiliation = {Mathematics Institute University of Warwick Coventry, CV4 7AL, United Kingdom},

author = {Siksek, Samir},

journal = {Journal de Théorie des Nombres de Bordeaux},

keywords = {exponential Diophantine equations; Wiles theory; Baker's theory},

language = {eng},

number = {2},

pages = {423-434},

publisher = {Université Bordeaux 1},

title = {Diophantine equations after Fermat’s last theorem},

url = {http://eudml.org/doc/10889},

volume = {21},

year = {2009},

}

TY - JOUR

AU - Siksek, Samir

TI - Diophantine equations after Fermat’s last theorem

JO - Journal de Théorie des Nombres de Bordeaux

PY - 2009

PB - Université Bordeaux 1

VL - 21

IS - 2

SP - 423

EP - 434

AB - These are expository notes that accompany my talk at the 25th Journées Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. I aim to shed light on the following two questions:(i)Given a Diophantine equation, what information can be obtained by following the strategy of Wiles’ proof of Fermat’s Last Theorem?(ii)Is it useful to combine this approach with traditional approaches to Diophantine equations: Diophantine approximation, arithmetic geometry, ...?

LA - eng

KW - exponential Diophantine equations; Wiles theory; Baker's theory

UR - http://eudml.org/doc/10889

ER -

## References

top- C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, User’s guide to PARI-GP, version 2.3.2. (See also http://pari.math.u-bordeaux.fr/)
- M. A. Bennett, Powers in recurrence sequences : Pell equations. Trans. Amer. Math. Soc. 357 (2005), 1675–1691. Zbl1125.11019MR2115381
- N. Bruin, On powers as sums of two cubes. Pages 169–184 of Algorithmic number theory (edited by W. Bosma), Lecture Notes in Comput. Sci. 1838, Springer, Berlin, 2000. Zbl0986.11021MR1850605
- W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The User Language. J. Symb. Comp. 24 (1997), 235–265. (See also http://magma.maths.usyd.edu.au/magma/) Zbl0898.68039MR1484478
- C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over $\mathbb{Q}$: wild $3$-adic exercises. J. Amer. Math. Soc. 14 No.4 (2001), 843–939. Zbl0982.11033MR1839918
- Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Annals of Mathematics 163 (2006), 969–1018. Zbl1113.11021MR2215137
- Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell Equation. Compositio Mathematica 142 (2006), 31–62. Zbl1128.11013MR2196761
- Y. Bugeaud, M. Mignotte and S. Siksek, A multi-Frey approach to some multi-parameter families of Diophantine equations. Canadian Journal of Mathematics 60 (2008), no. 3, 491–519. Zbl1156.11014MR2414954
- I. Chen and S. Siksek, Perfect powers expressible as sums of two cubes. Journal of Algebra, to appear. Zbl1215.11026
- J. H. E. Cohn, On square Fibonacci numbers; J. London Math. Soc. 39 (1964), 537–540. Zbl0127.26705MR163867
- J. H. E. Cohn, The Diophantine equation ${x}^{2}+C={y}^{n}$. Acta Arith. LXV.4 (1993), 367–381. Zbl0795.11016MR1259344
- J. E. Cremona, Algorithms for Modular Elliptic Curves. 2nd edition, Cambridge University Press, 1997. Zbl0872.14041MR1628193
- H. Cohen, Number Theory, Vol. I: Tools and Diophantine Equations and Vol. II: Analytic and Modern Tools. Springer-Verlag, GTM 239, 240, 2007. Zbl1119.11001MR2312337
- S. R. Dahmen, Classical and modular methods applied to Diophantine equations. University of Utrecht Ph.D. thesis, 2008.
- A. Kraus, Sur l’équation ${a}^{3}+{b}^{3}={c}^{p}$. Experimental Mathematics 7 (1998), No. 1, 1–13. Zbl0923.11054MR1618290
- B. Poonen, E. F. Schaefer and M. Stoll, Twists of $X\left(7\right)$ and primitive solutions to ${x}^{2}+{y}^{3}={z}^{7}$. Duke Math. J. 137 (2007), 103–158. Zbl1124.11019MR2309145
- K. Ribet, On modular representations of $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ arising from modular forms. Invent. Math. 100 (1990), 431–476. Zbl0773.11039MR1047143
- S. Siksek and J. E. Cremona, On the Diophantine equation ${x}^{2}+7={y}^{m}$. Acta Arith. 109.2 (2003), 143–149. Zbl1026.11043MR1980642
- W. A. Stein, Modular Forms: A Computational Approach. American Mathematical Society, Graduate Studies in Mathematics 79, 2007. Zbl1110.11015MR2289048
- R. L. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras. Annals of Math. 141 (1995), 553–572. Zbl0823.11030MR1333036
- A. Wiles, Modular elliptic curves and Fermat’s Last Theorem. Annals of Math. 141 (1995), 443–551. Zbl0823.11029MR1333035

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.