A note on the Dirichlet characters of polynomials
Wenpeng Zhang, Weili Yao (2004)
Acta Arithmetica
Similarity:
Wenpeng Zhang, Weili Yao (2004)
Acta Arithmetica
Similarity:
M. N. Huxley (1985)
Banach Center Publications
Similarity:
J. Kaczorowski (1985)
Banach Center Publications
Similarity:
David J. Platt, Sumaia Saad Eddin (2013)
Colloquium Mathematicae
Similarity:
Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.
Bruce Berndt (1975)
Acta Arithmetica
Similarity:
H.L. MONTGOMERY (1969)
Inventiones mathematicae
Similarity:
Frédéric Bayart (2004)
Acta Arithmetica
Similarity:
H. M. Bui, D. R. Heath-Brown (2010)
Acta Arithmetica
Similarity:
Stéphane Louboutin (2002)
Acta Arithmetica
Similarity:
Zhefeng Xu, Wenpeng Zhang (2007)
Acta Arithmetica
Similarity:
Bruno Gabutti (1984)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Kohji Matsumoto, Hirofumi Tsumura (2006)
Acta Arithmetica
Similarity:
Stephen Kwok-Kwong Choi, Angel V. Kumchev (2006)
Acta Arithmetica
Similarity:
A. Mallik (1981)
Acta Arithmetica
Similarity:
B. L. Sharma, H. L. Manocha (1969)
Matematički Vesnik
Similarity:
Stéphane R. Louboutin (2003)
Colloquium Mathematicae
Similarity:
We prove that if χ is a real non-principal Dirichlet character for which L(1,χ) ≤ 1- log2, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that L(s,χ) > 0 for s > 0.
Wojciech Młotkowski (2010)
Banach Center Publications
Similarity:
We study the nonnegative product linearization property for polynomials with eventually constant Jacobi parameters. For some special cases a necessary and sufficient condition for this property is provided.