Displaying similar documents to “Number of rational places of subfields of the function field of the Deligne-Lusztig curve of Ree type”

The real field with the rational points of an elliptic curve

Ayhan Günaydın, Philipp Hieronymi (2011)

Fundamenta Mathematicae

Similarity:

We consider the expansion of the real field by the group of rational points of an elliptic curve over the rational numbers. We prove a completeness result, followed by a quantifier elimination result. Moreover we show that open sets definable in that structure are semialgebraic.

Rational Bézier curves with infinitely many integral points

Petroula Dospra (2023)

Archivum Mathematicum

Similarity:

In this paper we consider rational Bézier curves with control points having rational coordinates and rational weights, and we give necessary and sufficient conditions for such a curve to have infinitely many points with integer coefficients. Furthermore, we give algorithms for the construction of these curves and the computation of theirs points with integer coefficients.

On triple curves through a rational triple point of a surface

M. R. Gonzalez-Dorrego (2006)

Annales Polonici Mathematici

Similarity:

Let k be an algebraically closed field of characteristic 0. Let C be an irreducible nonsingular curve in ℙⁿ such that 3C = S ∩ F, where S is a hypersurface and F is a surface in ℙⁿ and F has rational triple points. We classify the rational triple points through which such a curve C can pass (Theorem 1.8), and give an example (1.12). We only consider reduced and irreducible surfaces.

A dynamical Shafarevich theorem for twists of rational morphisms

Brian Justin Stout (2014)

Acta Arithmetica

Similarity:

Let K denote a number field, S a finite set of places of K, and ϕ: ℙⁿ → ℙⁿ a rational morphism defined over K. The main result of this paper states that there are only finitely many twists of ϕ defined over K which have good reduction at all places outside S. This answers a question of Silverman in the affirmative.