Global function fields with many rational places over the ternary field
Harald Niederreiter; Chaoping Xing
Acta Arithmetica (1998)
- Volume: 83, Issue: 1, page 65-86
- ISSN: 0065-1036
Access Full Article
topHow to cite
topHarald Niederreiter, and Chaoping Xing. "Global function fields with many rational places over the ternary field." Acta Arithmetica 83.1 (1998): 65-86. <http://eudml.org/doc/207106>.
@article{HaraldNiederreiter1998,
author = {Harald Niederreiter, Chaoping Xing},
journal = {Acta Arithmetica},
language = {eng},
number = {1},
pages = {65-86},
title = {Global function fields with many rational places over the ternary field},
url = {http://eudml.org/doc/207106},
volume = {83},
year = {1998},
}
TY - JOUR
AU - Harald Niederreiter
AU - Chaoping Xing
TI - Global function fields with many rational places over the ternary field
JO - Acta Arithmetica
PY - 1998
VL - 83
IS - 1
SP - 65
EP - 86
LA - eng
UR - http://eudml.org/doc/207106
ER -
References
top- [1] A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563. Zbl0863.11040
- [2] D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996. Zbl0874.11004
- [3] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. Zbl0292.12018
- [4] D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, D. Goss, D. R. Hayes, and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1-32. Zbl0793.11015
- [5] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2 (1996), 241-273.
- [6] H. Niederreiter and C. P. Xing, Explicit global function fields over the binary field with many rational places, Acta Arith. 75 (1996), 383-396. Zbl0877.11065
- [7] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. Cohen and H. Niederreiter (eds.), Cambridge Univ. Press, Cambridge, 1996, 269-296. Zbl0932.11050
- [8] H. Niederreiter and C. P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, Acta Arith. 79 (1997), 59-76. Zbl0891.11057
- [9] H. Niederreiter and C. P. Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II, Acta Arith. 81 (1997), 81-100. Zbl0886.11033
- [10] H. Niederreiter and C. P. Xing, The algebraic-geometry approach to low-discrepancy sequences, in: Monte Carlo and Quasi-Monte Carlo Methods '96, H. Niederreiter et al. (eds.), Lecture Notes in Statist., Springer, New York, to appear. Zbl0884.11031
- [11] H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points, in: Proc. Number Theory Conf. (Eger, 1996), de Gruyter, Berlin, to appear. Zbl0923.11093
- [12] H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field, Demonstratio Math., to appear. Zbl0922.11098
- [13] H.-G. Quebbemann, Cyclotomic Goppa codes, IEEE Trans. Inform. Theory 34 (1988), 1317-1320. Zbl0665.94014
- [14] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. Zbl0632.12017
- [15] J.-P. Serre, Rational Points on Curves over Finite Fields, lecture notes, Harvard University, 1985.
- [16] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
- [17] M. A. Tsfasman and S. G. Vlădut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991. Zbl0727.94007
- [18] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, in: Arithmetic Geometry, F. Catanese (ed.), Cambridge Univ. Press, Cambridge, 1997, 169-189. Zbl0884.11027
- [19] C. P. Xing, Maximal function fields and function fields with many rational places over finite fields of characteristic 2, preprint, 1997.
- [20] C. P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995), 87-102.
- [21] C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654.
- [22] C. P. Xing and H. Niederreiter, Drinfeld modules of rank 1 and algebraic curves with many rational points, preprint, 1996. Zbl0853.11051
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.