Sums of nonnegative multiplicative functions over integers without large prime factors I
Joung Min Song (2001)
Acta Arithmetica
Similarity:
Joung Min Song (2001)
Acta Arithmetica
Similarity:
Hoi H. Nguyen, Endre Szemerédi, Van H. Vu (2008)
Acta Arithmetica
Similarity:
Paul Erdös, Aleksandar Ivić (1982)
Publications de l'Institut Mathématique
Similarity:
J. M. De Koninck, A. Ivić (1990)
Publications de l'Institut Mathématique
Similarity:
Tizuo Xuan (1989)
Publications de l'Institut Mathématique
Similarity:
Belbachir, Hacene, Khelladi, Abdelkader (2007)
Annales Mathematicae et Informaticae
Similarity:
Florian Luca, Francesco Pappalardi (2007)
Acta Arithmetica
Similarity:
Jean-Marie De Koninck, Imre Kátai (2014)
Colloquium Mathematicae
Similarity:
Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function.
P. Gallagher (1974)
Acta Arithmetica
Similarity:
Jean-Marie De Koninck, Imre Kátai (2011)
Acta Arithmetica
Similarity:
Rafał Ziobro (2016)
Formalized Mathematics
Similarity:
Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases). Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization,...
Huixue Lao (2008)
Acta Arithmetica
Similarity:
E. J. Scourfield (2001)
Acta Arithmetica
Similarity:
Ferenc Szász (1972)
Colloquium Mathematicae
Similarity: