Displaying similar documents to “Fermat numbers and integers of the form a k + a l + p α

Fermat k -Fibonacci and k -Lucas numbers

Jhon J. Bravo, Jose L. Herrera (2020)

Mathematica Bohemica

Similarity:

Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all k -Fibonacci and k -Lucas numbers which are Fermat numbers. Some more general results are given.

Lucas factoriangular numbers

Bir Kafle, Florian Luca, Alain Togbé (2020)

Mathematica Bohemica

Similarity:

We show that the only Lucas numbers which are factoriangular are 1 and 2 .

Erratum to the paper "On the disc theorem" (Ann. Polon. Math. 55 (1991), 1-10)

Cabiria Andreian Cazacu (1992)

Annales Polonici Mathematici

Similarity:

Due to a technical error, part of a sentence was omitted on the top of page 8. The first line should read: “where f p k , p = a l or b l , means the number of folds of the covering ( δ k ' ' , T | , Δ l ' ' ) ending at p, i.e. covering a neighbourhood of p in a l b l without covering p itself”.

On generalized Fermat equations of signature (p,p,3)

Karolina Krawciów (2011)

Colloquium Mathematicae

Similarity:

This paper focuses on the Diophantine equation x + p α y = M z ³ , with fixed α, p, and M. We prove that, under certain conditions on M, this equation has no non-trivial integer solutions if n ( M , p α ) , where ( M , p α ) is an effective constant. This generalizes Theorem 1.4 of the paper by Bennett, Vatsal and Yazdani [Compos. Math. 140 (2004), 1399-1416].

Diophantine approximations with Fibonacci numbers

Victoria Zhuravleva (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let F n be the n -th Fibonacci number. Put ϕ = 1 + 5 2 . We prove that the following inequalities hold for any real α : 1) inf n | | F n α | | ϕ - 1 ϕ + 2 , 2) lim inf n | | F n α | | 1 5 , 3) lim inf n | | ϕ n α | | 1 5 . These results are the best possible.

A Marchaud type inequality

Jorge Bustamante (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We present a new Marchaud type inequality in 𝕃 p spaces.

On C * -spaces

P. Srivastava, K. K. Azad (1981)

Matematički Vesnik

Similarity: