Power integral bases in the family of simplest quartic fields.
Olajos, Péter (2005)
Experimental Mathematics
Similarity:
Olajos, Péter (2005)
Experimental Mathematics
Similarity:
Gaál, István, Olajos, Péter, Pohst, Michael (2002)
Experimental Mathematics
Similarity:
Humio Ichimura, Fuminori Kawamoto (2003)
Acta Arithmetica
Similarity:
István Gaál, Gábor Petrányi (2014)
Czechoslovak Mathematical Journal
Similarity:
It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields generated by a root of the polynomial , assuming that , and has no odd square factors. In addition to generators of power integral bases we also calculate...
Gaál, István, Pethö, Attila, Pohst, Michael (1994)
Experimental Mathematics
Similarity:
H. Grosse (1987)
Recherche Coopérative sur Programme n°25
Similarity:
Attila Pethő, Michael E. Pohst (2012)
Acta Arithmetica
Similarity:
Paulo Ribenboim (1992)
Manuscripta mathematica
Similarity:
A. Fröhlich (1972)
Inventiones mathematicae
Similarity:
F. Constantinescu, J. G. Taylor (1973)
Recherche Coopérative sur Programme n°25
Similarity:
Enrico Bombieri, Julia Mueller, Umberto Zannier (2001)
Acta Arithmetica
Similarity:
Haghighi, Mahmood (1988)
International Journal of Mathematics and Mathematical Sciences
Similarity:
M. D. Prešić (1970)
Matematički Vesnik
Similarity: