On Sums Involving Reciprocials Of Certain Arithmetical Functions
Paul Erdös, Aleksandar Ivić (1982)
Publications de l'Institut Mathématique
Similarity:
Paul Erdös, Aleksandar Ivić (1982)
Publications de l'Institut Mathématique
Similarity:
Joung Min Song (2002)
Acta Arithmetica
Similarity:
P. Gallagher (1974)
Acta Arithmetica
Similarity:
Huixue Lao (2008)
Acta Arithmetica
Similarity:
Joung Min Song (2001)
Acta Arithmetica
Similarity:
Jean-Marie De Koninck, Imre Kátai (2014)
Colloquium Mathematicae
Similarity:
Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function.
J. M. De Koninck, A. Ivić (1990)
Publications de l'Institut Mathématique
Similarity:
Jean-Marie De Koninck, Imre Kátai (2011)
Acta Arithmetica
Similarity:
Ferenc Szász (1972)
Colloquium Mathematicae
Similarity:
K. Ramachandra (1971)
Acta Arithmetica
Similarity:
Florian Luca, Francesco Pappalardi (2007)
Acta Arithmetica
Similarity:
Tizuo Xuan (1989)
Publications de l'Institut Mathématique
Similarity:
Jiahai Kan (2004)
Acta Arithmetica
Similarity:
E. J. Scourfield (2001)
Acta Arithmetica
Similarity: