On Sums Involving Reciprocials Of Certain Arithmetical Functions
Paul Erdös, Aleksandar Ivić (1982)
Publications de l'Institut Mathématique
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Paul Erdös, Aleksandar Ivić (1982)
Publications de l'Institut Mathématique
Similarity:
Joung Min Song (2002)
Acta Arithmetica
Similarity:
P. Gallagher (1974)
Acta Arithmetica
Similarity:
Huixue Lao (2008)
Acta Arithmetica
Similarity:
Joung Min Song (2001)
Acta Arithmetica
Similarity:
Jean-Marie De Koninck, Imre Kátai (2014)
Colloquium Mathematicae
Similarity:
Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function.
J. M. De Koninck, A. Ivić (1990)
Publications de l'Institut Mathématique
Similarity:
Jean-Marie De Koninck, Imre Kátai (2011)
Acta Arithmetica
Similarity:
Ferenc Szász (1972)
Colloquium Mathematicae
Similarity:
K. Ramachandra (1971)
Acta Arithmetica
Similarity:
Florian Luca, Francesco Pappalardi (2007)
Acta Arithmetica
Similarity:
Tizuo Xuan (1989)
Publications de l'Institut Mathématique
Similarity:
Jiahai Kan (2004)
Acta Arithmetica
Similarity:
E. J. Scourfield (2001)
Acta Arithmetica
Similarity: