Squares in arithmetic progression with at most two terms omitted
Shanta Laishram, T. N. Shorey (2008)
Acta Arithmetica
Similarity:
Shanta Laishram, T. N. Shorey (2008)
Acta Arithmetica
Similarity:
Shanta Laishram, T. N. Shorey, Szabolcs Tengely (2008)
Acta Arithmetica
Similarity:
Anirban Mukhopadhyay, T. N. Shorey (2003)
Acta Arithmetica
Similarity:
N. Saradha, T. N. Shorey, R. Tijdeman (2002)
Acta Arithmetica
Similarity:
Martin Klazar, Florian Luca (2003)
Acta Arithmetica
Similarity:
N. Saradha, T. N. Shorey (2001)
Acta Arithmetica
Similarity:
N. Saradha (2012)
Acta Arithmetica
Similarity:
Florian Luca, P. G. Walsh (2001)
Acta Arithmetica
Similarity:
Pingzhi Yuan, Yuan Li (2009)
Acta Arithmetica
Similarity:
Mario Huicochea (2010)
Acta Arithmetica
Similarity:
Noriko Hirata-Kohno, Shanta Laishram, T. N. Shorey, R. Tijdeman (2007)
Acta Arithmetica
Similarity:
Acu, Dumitru (2001)
General Mathematics
Similarity:
Yu. F. Bilu, M. Kulkarni, B. Sury (2004)
Acta Arithmetica
Similarity:
Samir Siksek (2009)
Journal de Théorie des Nombres de Bordeaux
Similarity:
These are expository notes that accompany my talk at the 25th Journées Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. I aim to shed light on the following two questions:
Alexander E. Patkowski (2021)
Czechoslovak Mathematical Journal
Similarity:
We consider an asymptotic analysis for series related to the work of Hardy and Littlewood (1923) on Diophantine approximation, as well as Davenport. In particular, we expand on ideas from some previous work on arithmetic series and the RH. To accomplish this, Mellin inversion is applied to certain infinite series over arithmetic functions to apply Cauchy's residue theorem, and then the remainder of terms is estimated according to the assumption of the RH. In the last section, we use...