A. D. Alexandrov's uniqueness theorem for convex polytopes and its refinements.
Panina, Gaiane (2008)
Beiträge zur Algebra und Geometrie
Similarity:
Panina, Gaiane (2008)
Beiträge zur Algebra und Geometrie
Similarity:
J. Fine (1995)
Discrete & computational geometry
Similarity:
Alon, N., Kleitman, D.J. (1997)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
J. Matousek, O. Schwarzkopf (1993)
Discrete & computational geometry
Similarity:
G.T. Sallee (1987)
Discrete & computational geometry
Similarity:
R.P. Stanley (1986)
Discrete & computational geometry
Similarity:
Bezdek, K., Hausel, T. (1994)
Beiträge zur Algebra und Geometrie
Similarity:
P. Filliman (1990)
Discrete & computational geometry
Similarity:
Breen, Marilyn (2010)
Beiträge zur Algebra und Geometrie
Similarity:
Stachel, Hellmuth (2000)
Journal for Geometry and Graphics
Similarity:
Böröczky, K.J., Fodor, F., Vígh, V. (2008)
Beiträge zur Algebra und Geometrie
Similarity:
G. Panina (2003)
Open Mathematics
Similarity:
All 3-dimensional convex polytopes are known to be rigid. Still their Minkowski differences (virtual polytopes) can be flexible with any finite freedom degree. We derive some sufficient rigidity conditions for virtual polytopes and present some examples of flexible ones. For example, Bricard's first and second flexible octahedra can be supplied by the structure of a virtual polytope.
N. Prabhu (1995)
Discrete & computational geometry
Similarity: