On elliptic diophantine equations that defy Thue's method: The case of the Ochoa curve.
Stroeker, Roel J., de Weger, Benjamin M.M. (1994)
Experimental Mathematics
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Stroeker, Roel J., de Weger, Benjamin M.M. (1994)
Experimental Mathematics
Similarity:
de Weger, Benjamin M.M. (1998)
Experimental Mathematics
Similarity:
Yasutsugu Fujita (2007)
Acta Arithmetica
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2008)
Acta Arithmetica
Similarity:
Levesque, C. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Maciej Ulas (2007)
Colloquium Mathematicae
Similarity:
Let f ∈ ℚ [X] and deg f ≤ 3. We prove that if deg f = 2, then the diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial solutions in ℚ (t). In the case when deg f = 3 and f(X) = X(X²+aX+b) we show that for all but finitely many a,b ∈ ℤ satisfying ab ≠ 0 and additionally, if p|a, then p²∤b, the equation f(x)f(y) = f(z)² has infinitely many nontrivial solutions in rationals.
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
Shin-ichi Katayama, Claude Levesque (2003)
Acta Arithmetica
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
Jianhua Chen (2001)
Acta Arithmetica
Similarity:
J. H. E. Cohn (2003)
Acta Arithmetica
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2009)
Acta Arithmetica
Similarity:
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity:
Pingzhi Yuan, Jiagui Luo (2010)
Acta Arithmetica
Similarity:
Gunther Cornelissen, Thanases Pheidas, Karim Zahidi (2005)
Journal de Théorie des Nombres de Bordeaux
Similarity:
We prove that Hilbert’s Tenth Problem for a ring of integers in a number field has a negative answer if satisfies two arithmetical conditions (existence of a so-called set of integers and of an elliptic curve of rank one over ). We relate division-ample sets to arithmetic of abelian varieties.