Division-ample sets and the Diophantine problem for rings of integers
Gunther Cornelissen[1]; Thanases Pheidas[2]; Karim Zahidi[3]
- [1] Mathematisch Instituut Universiteit Utrecht Postbus 80010 3508 TA Utrecht, Nederland
- [2] Department of Mathematics University of Crete P.O. Box 1470 Herakleio, Crete, Greece
- [3] Equipe de Logique Mathématique U.F.R. de Mathématiques (case 7012) Université Denis-Diderot Paris 7 2 place Jussieu 75251 Paris Cedex 05, France Adresse actuelle: Departement Wiskunde, Statistiek & Actuariaat Universiteit Amtwerpen Prinsstraat 13 2000 Antwerpen, België
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 3, page 727-735
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCornelissen, Gunther, Pheidas, Thanases, and Zahidi, Karim. "Division-ample sets and the Diophantine problem for rings of integers." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 727-735. <http://eudml.org/doc/249417>.
@article{Cornelissen2005,
abstract = {We prove that Hilbert’s Tenth Problem for a ring of integers in a number field $K$ has a negative answer if $K$ satisfies two arithmetical conditions (existence of a so-called division-ample set of integers and of an elliptic curve of rank one over $K$). We relate division-ample sets to arithmetic of abelian varieties.},
affiliation = {Mathematisch Instituut Universiteit Utrecht Postbus 80010 3508 TA Utrecht, Nederland; Department of Mathematics University of Crete P.O. Box 1470 Herakleio, Crete, Greece; Equipe de Logique Mathématique U.F.R. de Mathématiques (case 7012) Université Denis-Diderot Paris 7 2 place Jussieu 75251 Paris Cedex 05, France Adresse actuelle: Departement Wiskunde, Statistiek & Actuariaat Universiteit Amtwerpen Prinsstraat 13 2000 Antwerpen, België},
author = {Cornelissen, Gunther, Pheidas, Thanases, Zahidi, Karim},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {727-735},
publisher = {Université Bordeaux 1},
title = {Division-ample sets and the Diophantine problem for rings of integers},
url = {http://eudml.org/doc/249417},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Cornelissen, Gunther
AU - Pheidas, Thanases
AU - Zahidi, Karim
TI - Division-ample sets and the Diophantine problem for rings of integers
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 727
EP - 735
AB - We prove that Hilbert’s Tenth Problem for a ring of integers in a number field $K$ has a negative answer if $K$ satisfies two arithmetical conditions (existence of a so-called division-ample set of integers and of an elliptic curve of rank one over $K$). We relate division-ample sets to arithmetic of abelian varieties.
LA - eng
UR - http://eudml.org/doc/249417
ER -
References
top- J. Cheon, S. Hahn, The orders of the reductions of a point in the Mordell-Weil group of an elliptic curve. Acta Arith. 88 (1999), no. 3, 219–222. Zbl0933.11029MR1683630
- G. Cornelissen, Rational diophatine models of integer divisibility, unpublished manuscript (May, 2000).
- G. Cornelissen, K. Zahidi, Topology of Diophantine sets: remarks on Mazur’s conjectures. Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), 253–260, Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000. Zbl0982.14014MR1802017
- J. Cremona, mwrank, www.maths.nott.ac.uk/personal/jec/, 1995-2001. MR1835853
- M. Davis, Y. Matijasevič, J. Robinson, Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution. Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974), pp. 323–378. Zbl0346.02026MR432534
- J. Denef, Hilbert’s tenth problem for quadratic rings. Proc. Amer. Math. Soc. 48 (1975), 214–220. Zbl0324.02032MR360513
- J. Denef, Diophantine sets of algebraic integers, II. Trans. Amer. Math. Soc. 257 (1980), no. 1, 227–236. Zbl0426.12009MR549163
- J. Denef, L. Lipshitz, Diophantine sets over some rings of algebraic integers. J. London Math. Soc. (2) 18 (1978), no. 3, 385–391. Zbl0399.10049MR518221
- T. Pheidas, Hilbert’s tenth problem for a class of rings of algebraic integers. Proc. Amer. Math. Soc. 104 (1988), no. 2, 611–620. Zbl0697.12020MR962837
- T. Pheidas, K. Zahidi, Undecidability of existential theories of rings and fields: a survey, in: “Hilbert’s tenth problem: relations with arithmetic and algebraic geometry” (Ghent, 1999). Contemp. Math. 270, Amer. Math. Soc. (2000), 49–105. Zbl0981.03013MR1802009
- B. Poonen, Using elliptic curves of rank one towards the undecidability of Hilbert’s tenth problem over rings of algebraic integers. Algorithmic Number Theory (eds. C. Fieker, D. Kohel), 5th International Symp. ANTS-V, Sydney, Australia, July 2002, Proceedings, Lecture Notes in Computer Science 2369, Springer-Verlag, Berlin, 2002, pp. 33-42. Zbl1057.11068MR2041072
- H. Shapiro, A. Shlapentokh, Diophantine relations between algebraic number fields. Comm. Pure Appl. Math. XLII (1989), 1113-1122. Zbl0698.12022MR1029120
- A. Shlapentokh, Hilbert’s tenth problem over number fields, a survey, in: “Hilbert’s tenth problem: relations with arithmetic and algebraic geometry” (Ghent, 1999). Contemp. Math. 270, Amer. Math. Soc. (2000), 107–137. Zbl0994.03001MR1802010
- A. Shlapentokh, Extensions of Hilbert’s tenth problem to some algebraic number fields. Comm. Pure Appl. Math. XLII (1989), 939–962. Zbl0695.12020MR1008797
- J.H. Silverman, The arithmetic of elliptic curves. Graduate Texts in Math. 106, Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
- D. Simon, Computing the rank of elliptic curves over number fields. LMS J. Comput. Math. 5 (2002), 7–17. Zbl1067.11015MR1916919
- M. Stoll, Hyperelliptic curves MAGMA-package, www.math.iu-bremen.de/stoll/magma/.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.