Division-ample sets and the Diophantine problem for rings of integers

Gunther Cornelissen[1]; Thanases Pheidas[2]; Karim Zahidi[3]

  • [1] Mathematisch Instituut Universiteit Utrecht Postbus 80010 3508 TA Utrecht, Nederland
  • [2] Department of Mathematics University of Crete P.O. Box 1470 Herakleio, Crete, Greece
  • [3] Equipe de Logique Mathématique U.F.R. de Mathématiques (case 7012) Université Denis-Diderot Paris 7 2 place Jussieu 75251 Paris Cedex 05, France Adresse actuelle: Departement Wiskunde, Statistiek & Actuariaat Universiteit Amtwerpen Prinsstraat 13 2000 Antwerpen, België

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 3, page 727-735
  • ISSN: 1246-7405

Abstract

top
We prove that Hilbert’s Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called division-ample set of integers and of an elliptic curve of rank one over K ). We relate division-ample sets to arithmetic of abelian varieties.

How to cite

top

Cornelissen, Gunther, Pheidas, Thanases, and Zahidi, Karim. "Division-ample sets and the Diophantine problem for rings of integers." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 727-735. <http://eudml.org/doc/249417>.

@article{Cornelissen2005,
abstract = {We prove that Hilbert’s Tenth Problem for a ring of integers in a number field $K$ has a negative answer if $K$ satisfies two arithmetical conditions (existence of a so-called division-ample set of integers and of an elliptic curve of rank one over $K$). We relate division-ample sets to arithmetic of abelian varieties.},
affiliation = {Mathematisch Instituut Universiteit Utrecht Postbus 80010 3508 TA Utrecht, Nederland; Department of Mathematics University of Crete P.O. Box 1470 Herakleio, Crete, Greece; Equipe de Logique Mathématique U.F.R. de Mathématiques (case 7012) Université Denis-Diderot Paris 7 2 place Jussieu 75251 Paris Cedex 05, France Adresse actuelle: Departement Wiskunde, Statistiek & Actuariaat Universiteit Amtwerpen Prinsstraat 13 2000 Antwerpen, België},
author = {Cornelissen, Gunther, Pheidas, Thanases, Zahidi, Karim},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {727-735},
publisher = {Université Bordeaux 1},
title = {Division-ample sets and the Diophantine problem for rings of integers},
url = {http://eudml.org/doc/249417},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Cornelissen, Gunther
AU - Pheidas, Thanases
AU - Zahidi, Karim
TI - Division-ample sets and the Diophantine problem for rings of integers
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 727
EP - 735
AB - We prove that Hilbert’s Tenth Problem for a ring of integers in a number field $K$ has a negative answer if $K$ satisfies two arithmetical conditions (existence of a so-called division-ample set of integers and of an elliptic curve of rank one over $K$). We relate division-ample sets to arithmetic of abelian varieties.
LA - eng
UR - http://eudml.org/doc/249417
ER -

References

top
  1. J. Cheon, S. Hahn, The orders of the reductions of a point in the Mordell-Weil group of an elliptic curve. Acta Arith. 88 (1999), no. 3, 219–222. Zbl0933.11029MR1683630
  2. G. Cornelissen, Rational diophatine models of integer divisibility, unpublished manuscript (May, 2000). 
  3. G. Cornelissen, K. Zahidi, Topology of Diophantine sets: remarks on Mazur’s conjectures. Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), 253–260, Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000. Zbl0982.14014MR1802017
  4. J. Cremona, mwrank, www.maths.nott.ac.uk/personal/jec/, 1995-2001. MR1835853
  5. M. Davis, Y. Matijasevič, J. Robinson, Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution. Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974), pp. 323–378. Zbl0346.02026MR432534
  6. J. Denef, Hilbert’s tenth problem for quadratic rings. Proc. Amer. Math. Soc. 48 (1975), 214–220. Zbl0324.02032MR360513
  7. J. Denef, Diophantine sets of algebraic integers, II. Trans. Amer. Math. Soc. 257 (1980), no. 1, 227–236. Zbl0426.12009MR549163
  8. J. Denef, L. Lipshitz, Diophantine sets over some rings of algebraic integers. J. London Math. Soc. (2) 18 (1978), no. 3, 385–391. Zbl0399.10049MR518221
  9. T. Pheidas, Hilbert’s tenth problem for a class of rings of algebraic integers. Proc. Amer. Math. Soc. 104 (1988), no. 2, 611–620. Zbl0697.12020MR962837
  10. T. Pheidas, K. Zahidi, Undecidability of existential theories of rings and fields: a survey, in: “Hilbert’s tenth problem: relations with arithmetic and algebraic geometry” (Ghent, 1999). Contemp. Math. 270, Amer. Math. Soc. (2000), 49–105. Zbl0981.03013MR1802009
  11. B. Poonen, Using elliptic curves of rank one towards the undecidability of Hilbert’s tenth problem over rings of algebraic integers. Algorithmic Number Theory (eds. C. Fieker, D. Kohel), 5th International Symp. ANTS-V, Sydney, Australia, July 2002, Proceedings, Lecture Notes in Computer Science 2369, Springer-Verlag, Berlin, 2002, pp. 33-42. Zbl1057.11068MR2041072
  12. H. Shapiro, A. Shlapentokh, Diophantine relations between algebraic number fields. Comm. Pure Appl. Math. XLII (1989), 1113-1122. Zbl0698.12022MR1029120
  13. A. Shlapentokh, Hilbert’s tenth problem over number fields, a survey, in: “Hilbert’s tenth problem: relations with arithmetic and algebraic geometry” (Ghent, 1999). Contemp. Math. 270, Amer. Math. Soc. (2000), 107–137. Zbl0994.03001MR1802010
  14. A. Shlapentokh, Extensions of Hilbert’s tenth problem to some algebraic number fields. Comm. Pure Appl. Math. XLII (1989), 939–962. Zbl0695.12020MR1008797
  15. J.H. Silverman, The arithmetic of elliptic curves. Graduate Texts in Math. 106, Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
  16. D.  Simon, Computing the rank of elliptic curves over number fields. LMS J. Comput. Math. 5 (2002), 7–17. Zbl1067.11015MR1916919
  17. M. Stoll, Hyperelliptic curves MAGMA-package, www.math.iu-bremen.de/stoll/magma/. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.