Displaying similar documents to “A construction of curves over finite fields”

Non-existence of points rational over number fields on Shimura curves

Keisuke Arai (2016)

Acta Arithmetica

Similarity:

Jordan, Rotger and de Vera-Piquero proved that Shimura curves have no points rational over imaginary quadratic fields under a certain assumption. In this article, we extend their results to the case of number fields of higher degree. We also give counterexamples to the Hasse principle on Shimura curves.

Trivial points on towers of curves

Xavier Xarles (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In order to study the behavior of the points in a tower of curves, we introduce and study trivial points on towers of curves, and we discuss their finiteness over number fields. We relate the problem of proving that the only rational points are the trivial ones at some level of the tower, to the unboundeness of the gonality of the curves in the tower, which we show under some hypothesis.

Rational Bézier curves with infinitely many integral points

Petroula Dospra (2023)

Archivum Mathematicum

Similarity:

In this paper we consider rational Bézier curves with control points having rational coordinates and rational weights, and we give necessary and sufficient conditions for such a curve to have infinitely many points with integer coefficients. Furthermore, we give algorithms for the construction of these curves and the computation of theirs points with integer coefficients.

Embedding theorems for spaces of ℝ-places of rational function fields and their products

Katarzyna Kuhlmann, Franz-Viktor Kuhlmann (2012)

Fundamenta Mathematicae

Similarity:

We study spaces M(R(y)) of ℝ-places of rational function fields R(y) in one variable. For extensions F|R of formally real fields, with R real closed and satisfying a natural condition, we find embeddings of M(R(y)) in M(F(y)) and prove uniqueness results. Further, we study embeddings of products of spaces of the form M(F(y)) in spaces of ℝ-places of rational function fields in several variables. Our results uncover rather unexpected obstacles to a positive solution of the open question...