On Existance Of Expansion Of A Complex Function
Miodrag Rašković (1979)
Publications de l'Institut Mathématique
Similarity:
Miodrag Rašković (1979)
Publications de l'Institut Mathématique
Similarity:
Yan-Hui Qu, Hui Rao, Ya-Min Yang (2005)
Acta Arithmetica
Similarity:
P. Skibiński (1970)
Annales Polonici Mathematici
Similarity:
W.H. Echols (1893)
Bulletin of the New York Mathematical Society
Similarity:
T. V. Narayana, E. Goodman (1969)
Cahiers du Bureau universitaire de recherche opérationnelle Série Recherche
Similarity:
Nathan Wozny, Luca Q. Zamboni (2001)
Acta Arithmetica
Similarity:
Peter J. Grabner, Pierre Liardet, Robert F. Tichy (1995)
Acta Arithmetica
Similarity:
Luís Roçadas (2003)
Acta Arithmetica
Similarity:
Thomas Stoll (2006)
Acta Arithmetica
Similarity:
W.H. Echols (1893)
Bulletin of the New York Mathematical Society
Similarity:
Barat, Guy, Frougny, Christiane, Pethő, Attila (2005)
Integers
Similarity:
Vilmos Komornik, Anna Chiara Lai, Marco Pedicini (2011)
Journal of the European Mathematical Society
Similarity:
Expansions in noninteger bases often appear in number theory and probability theory, and they are closely connected to ergodic theory, measure theory and topology. For two-letter alphabets the golden ratio plays a special role: in smaller bases only trivial expansions are unique, whereas in greater bases there exist nontrivial unique expansions. In this paper we determine the corresponding critical bases for all three-letter alphabets and we establish the fractal nature of these bases...
Diego Marques, Alain Togbé (2011)
Colloquium Mathematicae
Similarity:
In 2000, Florian Luca proved that F₁₀ = 55 and L₅ = 11 are the largest numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively. In this paper, we find terms of a linear recurrence sequence with only one block of digits in its expansion in base g ≥ 2. As an application, we generalize Luca's result by finding the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10 in its decimal expansion.