The -adic gamma function and the congruences of Atkin and Swinnerton-Dyer
Lucien Van Hamme (1981-1982)
Groupe de travail d'analyse ultramétrique
Similarity:
Lucien Van Hamme (1981-1982)
Groupe de travail d'analyse ultramétrique
Similarity:
Zhi-Wei Sun (2011)
Acta Arithmetica
Similarity:
Tsuneo Ishikawa (2006)
Acta Arithmetica
Similarity:
L. Carlitz (1959/60)
Mathematische Zeitschrift
Similarity:
Winfried Kohnen (1988)
Mathematische Annalen
Similarity:
Mehmet Cenkci (2005)
Acta Mathematica Universitatis Ostraviensis
Similarity:
We use the properties of -adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.
Alain Robert, Maxime Zuber (1995)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Tao Yan Zhao, Lily J. Jin, C. Gu (2016)
Open Mathematics
Similarity:
Let p3(n) denote the number of 3-component multipartitions of n. Recently, using a 3-dissection formula for the generating function of p3(n), Baruah and Ojah proved that for n ≥ 0, p3(9n + 5) ≡ 0 (mod 33) and p3 (9n + 8) ≡ 0 (mod 34). In this paper, we prove several congruences modulo powers of 3 for p3(n) by using some theta function identities. For example, we prove that for n ≥ 0, p3 (243n + 233) ≡ p3 (729n + 638) ≡ 0 (mod 310).
Matija Kazalicki (2011)
Acta Arithmetica
Similarity:
Zhi-Wei Sun (2006)
Acta Arithmetica
Similarity:
Glenn J. Fox (2002)
Journal de théorie des nombres de Bordeaux
Similarity:
We illustrate how a particular expression, involving the generalized Bernoulli polynomials, satisfies systems of congruence relations if and only if a similar expression, involving the generalized Bernoulli numbers, satisfies the same congruence relations. These congruence relations include the Kummer congruences, and recent extensions of the Kummer congruences provided by Gunaratne.
Olcay Karaatlı (2016)
Acta Arithmetica
Similarity:
Let Vₙ(P,Q) denote the generalized Lucas sequence with parameters P and Q. For all odd relatively prime values of P and Q such that P² + 4Q > 0, we determine all indices n such that Vₙ(P,Q) = 7kx² when k|P. As an application, we determine all indices n such that the equation Vₙ = 21x² has solutions.
Devendra Shirolkar, S. A. Katre (2011)
Acta Arithmetica
Similarity: