The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “An existence theorem for a class of elliptic problems in L¹”

The existence of solutions for elliptic systems with nonuniform growth

Y. Q. Fu (2002)

Studia Mathematica

Similarity:

We study the Dirichlet problems for elliptic partial differential systems with nonuniform growth. By means of the Musielak-Orlicz space theory, we obtain the existence of weak solutions, which generalizes the result of Acerbi and Fusco [1].

Orlicz spaces, α-decreasing functions, and the Δ₂ condition

Gary M. Lieberman (2004)

Colloquium Mathematicae

Similarity:

We prove some quantitatively sharp estimates concerning the Δ₂ and ∇₂ conditions for functions which generalize known ones. The sharp forms arise in the connection between Orlicz space theory and the theory of elliptic partial differential equations.

On a comparison principle for a quasilinear elliptic boundary value problem of a nonmonotone type

Michal Křížek, Liping Liu (1996)

Applicationes Mathematicae

Similarity:

A nonlinear elliptic partial differential equation with the Newton boundary conditions is examined. We prove that for greater data we get a greater weak solution. This is the so-called comparison principle. It is applied to a steady-state heat conduction problem in anisotropic magnetic cores of large transformers.

On some elliptic boundary-value problems with discontinuous nonlinearities

Giovanni Anello (2005)

Annales Polonici Mathematici

Similarity:

We establish two existence results for elliptic boundary-value problems with discontinuous nonlinearities. One of them concerns implicit elliptic equations of the form ψ(-Δu) = f(x,u). We emphasize that our assumptions permit the nonlinear term f to be discontinuous with respect to the second variable at each point.