The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the convergence and application of Stirling's method”

Local convergence for a multi-point family of super-Halley methods in a Banach space under weak conditions

Ioannis K. Argyros, Santhosh George (2015)

Applicationes Mathematicae

Similarity:

We present a local multi-point convergence analysis for a family of super-Halley methods of high convergence order in order to approximate a solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypotheses on the first and second Fréchet derivative of the operator involved. Earlier studies use hypotheses up to the third Fréchet derivative. Numerical examples are also provided.

Expanding the applicability of two-point Newton-like methods under generalized conditions

Ioannis K. Argyros, Saïd Hilout (2013)

Applicationes Mathematicae

Similarity:

We use a two-point Newton-like method to approximate a locally unique solution of a nonlinear equation containing a non-differentiable term in a Banach space setting. Using more precise majorizing sequences than in earlier studies, we present a tighter semi-local and local convergence analysis and weaker convergence criteria. This way we expand the applicability of these methods. Numerical examples are provided where the old convergence criteria do not hold but the new convergence criteria...

An improved convergence analysis of Newton's method for twice Fréchet differentiable operators

Ioannis K. Argyros, Sanjay K. Khattri (2013)

Applicationes Mathematicae

Similarity:

We develop local and semilocal convergence results for Newton's method in order to solve nonlinear equations in a Banach space setting. The results compare favorably to earlier ones utilizing Lipschitz conditions on the second Fréchet derivative of the operators involved. Numerical examples where our new convergence conditions are satisfied but earlier convergence conditions are not satisfied are also reported.

On the convergence of two-step Newton-type methods of high efficiency index

Ioannis K. Argyros, Saïd Hilout (2009)

Applicationes Mathematicae

Similarity:

We introduce a new idea of recurrent functions to provide a new semilocal convergence analysis for two-step Newton-type methods of high efficiency index. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar type, and a differential equation containing a Green's kernel are also provided. ...

Convergence domains under Zabrejko-Zinčenko conditions using recurrent functions

Ioannis K. Argyros, Saïd Hilout (2011)

Applicationes Mathematicae

Similarity:

We provide a semilocal convergence analysis for Newton-type methods using our idea of recurrent functions in a Banach space setting. We use Zabrejko-Zinčenko conditions. In particular, we show that the convergence domains given before can be extended under the same computational cost. Numerical examples are also provided to show that we can solve equations in cases not covered before.

Local convergence theorems for Newton's method from data at one point

Ioannis K. Argyros (2002)

Applicationes Mathematicae

Similarity:

We provide local convergence theorems for the convergence of Newton's method to a solution of an equation in a Banach space utilizing only information at one point. It turns out that for analytic operators the convergence radius for Newton's method is enlarged compared with earlier results. A numerical example is also provided that compares our results favorably with earlier ones.

On a new method for enlarging the radius of convergence for Newton's method

Ioannis K. Argyros (2001)

Applicationes Mathematicae

Similarity:

We provide new local and semilocal convergence results for Newton's method. We introduce Lipschitz-type hypotheses on the mth-Frechet derivative. This way we manage to enlarge the radius of convergence of Newton's method. Numerical examples are also provided to show that our results guarantee convergence where others do not.

Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative

Ioannis K. Argyros, Santhosh George (2017)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

This paper is devoted to the study of a multi-step method with divided differences for solving nonlinear equations in Banach spaces. In earlier studies, hypotheses on the Fréchet derivative up to the sixth order of the operator under consideration is used to prove the convergence of the method. That restricts the applicability of the method. In this paper we extended the applicability of the sixth-order multi-step method by using only hypotheses on the first derivative of the operator...

New unifying convergence criteria for Newton-like methods

Ioannis K. Argyros (2002)

Applicationes Mathematicae

Similarity:

We present a local and a semilocal analysis for Newton-like methods in a Banach space. Our hypotheses on the operators involved are very general. It turns out that by choosing special cases for the "majorizing" functions we obtain all previous results in the literature, but not vice versa. Since our results give a deeper insight into the structure of the functions involved, we can obtain semilocal convergence under weaker conditions and in the case of local convergence a larger convergence...

Local convergence comparison between two novel sixth order methods for solving equations

Santhosh George, Ioannis K. Argyros (2019)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

The aim of this article is to provide the local convergence analysis of two novel competing sixth convergence order methods for solving equations involving Banach space valued operators. Earlier studies have used hypotheses reaching up to the sixth derivative but only the first derivative appears in these methods. These hypotheses limit the applicability of the methods. That is why we are motivated to present convergence analysis based only on the first derivative. Numerical examples...

A convergence analysis of Newton's method under the gamma-condition in Banach spaces

Ioannis K. Argyros (2009)

Applicationes Mathematicae

Similarity:

We provide a local as well as a semilocal convergence analysis for Newton's method to approximate a locally unique solution of an equation in a Banach space setting. Using a combination of center-gamma with a gamma-condition, we obtain an upper bound on the inverses of the operators involved which can be more precise than those given in the elegant works by Smale, Wang, and Zhao and Wang. This observation leads (under the same or less computational cost) to a convergence analysis with...

Local convergence of two competing third order methods in Banach space

Ioannis K. Argyros, Santhosh George (2014)

Applicationes Mathematicae

Similarity:

We present a local convergence analysis for two popular third order methods of approximating a solution of a nonlinear equation in a Banach space setting. The convergence ball and error estimates are given for both methods under the same conditions. A comparison is given between the two methods, as well as numerical examples.

Improved ball convergence of Newton's method under general conditions

Ioannis K. Argyros, Hongmin Ren (2012)

Applicationes Mathematicae

Similarity:

We present ball convergence results for Newton's method in order to approximate a locally unique solution of a nonlinear operator equation in a Banach space setting. Our hypotheses involve very general majorants on the Fréchet derivatives of the operators involved. In the special case of convex majorants our results, compared with earlier ones, have at least as large radius of convergence, no less tight error bounds on the distances involved, and no less precise information on the uniqueness...

Inexact Newton methods and recurrent functions

Ioannis K. Argyros, Saïd Hilout (2010)

Applicationes Mathematicae

Similarity:

We provide a semilocal convergence analysis for approximating a solution of an equation in a Banach space setting using an inexact Newton method. By using recurrent functions, we provide under the same or weaker hypotheses: finer error bounds on the distances involved, and an at least as precise information on the location of the solution as in earlier papers. Moreover, if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained. Furthermore,...