The search session has expired. Please query the service again.

Displaying similar documents to “Additive functions with respect to expansions over the set of Gaussian integers”

The Gaussian zoo.

Renze, John, Wagon, Stan, Wick, Brian (2001)

Experimental Mathematics

Similarity:

Gaussian Integers

Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, Yasunari Shidama (2013)

Formalized Mathematics

Similarity:

Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rational number field and a quotient field of the Gaussian integer ring are isomorphic. ...

Gamma-function and Gaussian-sum-function

Helversen-Pasotto, A.

Similarity:

After some remarks about the analogy between the classical gamma-function and Gaussian sums over finite fields a complete, very short explicit proof is given of an identity expressing a certain sum of products of Gaussian sums as a product of Gaussian sums. This identity is an analogue of the classical Barnes’ first lemma for the gamma-function. Four multiplicative characters of a finite field are concerned; the usually necessary restrictions on the triviality of certain products of...

Geometric influences II: Correlation inequalities and noise sensitivity

Nathan Keller, Elchanan Mossel, Arnab Sen (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In a recent paper, we presented a new definition of influences in product spaces of continuous distributions, and showed that analogues of the most fundamental results on discrete influences, such as the KKL theorem, hold for the new definition in Gaussian space. In this paper we prove Gaussian analogues of two of the central applications of influences: Talagrand’s lower bound on the correlation of increasing subsets of the discrete cube, and the Benjamini–Kalai–Schramm (BKS) noise sensitivity...