Causality and Non-Localisable Fields
F. Constantinescu, J. G. Taylor (1973)
Recherche Coopérative sur Programme n°25
Similarity:
F. Constantinescu, J. G. Taylor (1973)
Recherche Coopérative sur Programme n°25
Similarity:
Enrico Bombieri, Julia Mueller, Umberto Zannier (2001)
Acta Arithmetica
Similarity:
Shabbir, Ghulam, Amur, Khuda Bux (2006)
APPS. Applied Sciences
Similarity:
Jeffrey L. Stuart (2016)
Czechoslovak Mathematical Journal
Similarity:
M. D. Prešić (1970)
Matematički Vesnik
Similarity:
Grzegorz Łubczonok (1981)
Colloquium Mathematicae
Similarity:
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity:
Arne Winterhof (2001)
Acta Arithmetica
Similarity:
Attila Pethő, Michael E. Pohst (2012)
Acta Arithmetica
Similarity:
Krzysztof Jan Nowak (1996)
Annales Polonici Mathematici
Similarity:
This paper presents a natural axiomatization of the real closed fields. It is universal and admits quantifier elimination.
Yu-Ru Liu, Craig V. Spencer, Xiaomei Zhao (2010)
Acta Arithmetica
Similarity:
Paulo Ribenboim (1992)
Manuscripta mathematica
Similarity:
Ján Minác, Michel Spira (1990)
Mathematische Zeitschrift
Similarity:
Omar, Sami (2001)
Experimental Mathematics
Similarity:
M. Duggal, I. S. Luthar (1978)
Colloquium Mathematicae
Similarity:
Philippe Lebacque, Alexey Zykin (2015)
Acta Arithmetica
Similarity:
We prove lower and upper bounds for the class numbers of algebraic curves defined over finite fields. These bounds turn out to be better than most of the previously known bounds obtained using combinatorics. The methods used in the proof are essentially those from the explicit asymptotic theory of global fields. We thus provide a concrete application of effective results from the asymptotic theory of global fields and their zeta functions.
Ivan Kolář (1973)
Annales Polonici Mathematici
Similarity: