Displaying similar documents to “Superconvergence by Steklov averaging in the finite element method”

A boundary integral Poisson-Boltzmann solvers package for solvated bimolecular simulations

Weihua Geng (2015)

Molecular Based Mathematical Biology

Similarity:

Numerically solving the Poisson-Boltzmann equation is a challenging task due to the existence of the dielectric interface, singular partial charges representing the biomolecule, discontinuity of the electrostatic field, infinite simulation domains, etc. Boundary integral formulation of the Poisson-Boltzmann equation can circumvent these numerical challenges and meanwhile conveniently use the fast numerical algorithms and the latest high performance computers to achieve combined improvement...

Numerical approximation of Knudsen layer for the Euler-Poisson system

Fréderique Charles, Nicolas Vauchelet, Christophe Besse, Thierry Goudon, Ingrid Lacroix–Violet, Jean-Paul Dudon, Laurent Navoret (2011)

ESAIM: Proceedings

Similarity:

In this work, we consider the computation of the boundary conditions for the linearized Euler–Poisson derived from the BGK kinetic model in the small mean free path regime. Boundary layers are generated from the fact that the incoming kinetic flux might be far from the thermodynamical equilibrium. In [2], the authors propose a method to compute numerically the boundary conditions in the hydrodynamic limit relying on an analysis of the...

Moving Dirichlet boundary conditions

Robert Altmann (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class...

Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II

David Gérard-Varet, Daniel Han-Kwan, Frédéric Rousset (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

In this paper, we study the quasineutral limit of the isothermal Euler-Poisson equation for ions, in a domain with boundary. This is a follow-up to our previous work [], devoted to no-penetration as well as subsonic outflow boundary conditions. We focus here on the case of supersonic outflow velocities. The structure of the boundary layers and the stabilization mechanism are different.