Displaying similar documents to “Sums of L-functions over rational function fields”

Mean value theorems for L-functions over prime polynomials for the rational function field

Julio C. Andrade, Jonathan P. Keating (2013)

Acta Arithmetica

Similarity:

The first and second moments are established for the family of quadratic Dirichlet L-functions over the rational function field at the central point s=1/2, where the character χ is defined by the Legendre symbol for polynomials over finite fields and runs over all monic irreducible polynomials P of a given odd degree. Asymptotic formulae are derived for fixed finite fields when the degree of P is large. The first moment obtained here is the function field analogue of a result due to...

Extending automorphisms to the rational fractions field.

Fernando Fernández Rodríguez, Agustín Llerena Achutegui (1991)

Extracta Mathematicae

Similarity:

We say that a field K has the Extension Property if every automorphism of K(X) extends to an automorphism of K. J.M. Gamboa and T. Recio [2] have introduced this concept, naive in appearance, because of its crucial role in the study of homogeneity conditions in spaces of orderings of functions fields. Gamboa [1] has studied several classes of fields with this property: Algebraic extensions of the field Q of rational numbers; euclidean, algebraically closed and pythagorean fields; fields...

Waring's problem for fields

William Ellison (2013)

Acta Arithmetica

Similarity:

If K is a field, denote by P(K,k) the a ∈ K which are sums of kth powers of elements of K, by P⁺(K,k) the set of a ∈ K which are sums of kth powers of totally positive elements of K. We give some simple conditions for which there exist integers w(K,k) and g(K,k) such that: a ∈ P(K,k) implies that a is the sum of at most w(K,k) kth powers; a ∈ P⁺(K,k) implies that a is the sum of at most g(K,k) totally positive kth powers. We apply the results to characterise functions that are sums of...

Embedding theorems for spaces of ℝ-places of rational function fields and their products

Katarzyna Kuhlmann, Franz-Viktor Kuhlmann (2012)

Fundamenta Mathematicae

Similarity:

We study spaces M(R(y)) of ℝ-places of rational function fields R(y) in one variable. For extensions F|R of formally real fields, with R real closed and satisfying a natural condition, we find embeddings of M(R(y)) in M(F(y)) and prove uniqueness results. Further, we study embeddings of products of spaces of the form M(F(y)) in spaces of ℝ-places of rational function fields in several variables. Our results uncover rather unexpected obstacles to a positive solution of the open question...