The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Steinitz classes of tamely ramified nonabelian extensions of odd prime power order”

Compactification-like extensions

M. R. Koushesh

Similarity:

Let X be a space. A space Y is called an extension of X if Y contains X as a dense subspace. For an extension Y of X the subspace Y∖X of Y is called the remainder of Y. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X pointwise. For two (equivalence classes of) extensions Y and Y' of X let Y ≤ Y' if there is a continuous mapping of Y' into Y which fixes X pointwise. Let 𝓟 be a topological property. An extension Y of X is called a 𝓟-extension...

Indices of subfields of cyclotomic ℤₚ-extensions and higher degree Fermat quotients

Yoko Inoue, Kaori Ota (2015)

Acta Arithmetica

Similarity:

We consider the indices of subfields of cyclotomic ℤₚ-extensions of number fields. For the nth layer Kₙ of the cyclotomic ℤₚ-extension of ℚ, we find that the prime factors of the index of Kₙ/ℚ are those primes less than the extension degree pⁿ which split completely in Kₙ. Namely, the prime factor q satisfies q p - 1 1 ( m o d p n + 1 ) , and this leads us to consider higher degree Fermat quotients. Indices of subfields of cyclotomic ℤₚ-extensions of a number field which is cyclic over ℚ with extension degree...