Semilocal convergence for Newton's method on a Banach space with a convergence structure and twice Fréchet differentiable operators.
Argyros, Ioannis K. (2003)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Argyros, Ioannis K. (2003)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Argyros, Ioannis K. (1996)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Ioannis K. Argyros (2005)
Applicationes Mathematicae
Similarity:
The Newton-Kantorovich hypothesis (15) has been used for a long time as a sufficient condition for convergence of Newton's method to a locally unique solution of a nonlinear equation in a Banach space setting. Recently in [3], [4] we showed that this hypothesis can always be replaced by a condition weaker in general (see (18), (19) or (20)) whose verification requires the same computational cost. Moreover, finer error bounds and at least as precise information on the location of the...
José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2012)
ESAIM: Mathematical Modelling and Numerical Analysis
Similarity:
From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to ...
Argyros, Ioannis K. (2001)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2013)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to nonlinear integral equations of mixed Hammerstein...
Ioannis Argyros (1999)
Applicationes Mathematicae
Similarity:
We use inexact Newton iterates to approximate a solution of a nonlinear equation in a Banach space. Solving a nonlinear equation using Newton iterates at each stage is very expensive in general. That is why we consider inexact Newton methods, where the Newton equations are solved only approximately, and in some unspecified manner. In earlier works [2], [3], natural assumptions under which the forcing sequences are uniformly less than one were given based on the second Fréchet derivative...
Ioannis K. Argyros (2005)
Applicationes Mathematicae
Similarity:
The Newton-Kantorovich approach and the majorant principle are used to provide new local and semilocal convergence results for Newton-like methods using outer or generalized inverses in a Banach space setting. Using the same conditions as before, we provide more precise information on the location of the solution and on the error bounds on the distances involved. Moreover since our Newton-Kantorovich-type hypothesis is weaker than before, we can cover cases where the original Newton-Kantorovich...
Argyros, Ioannis K.I. (1998)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Ioannis K. Argyros (2006)
Applicationes Mathematicae
Similarity:
The Newton-Mysovskikh theorem provides sufficient conditions for the semilocal convergence of Newton's method to a locally unique solution of an equation in a Banach space setting. It turns out that under weaker hypotheses and a more precise error analysis than before, weaker sufficient conditions can be obtained for the local as well as semilocal convergence of Newton's method. Error bounds on the distances involved as well as a larger radius of convergence are obtained. Some numerical...
Ioannis K. Argyros (2007)
Applicationes Mathematicae
Similarity:
We answer a question posed by Cianciaruso and De Pascale: What is the exact size of the gap between the semilocal convergence domains of the Newton and the modified Newton method? In particular, is it possible to close it? Our answer is yes in some cases. Using some ideas of ours and more precise error estimates we provide a semilocal convergence analysis for both methods with the following advantages over earlier approaches: weaker hypotheses; finer error bounds on the distances involved,...
I. K. Argyros, D. González (2015)
Applicationes Mathematicae
Similarity:
We provide a local as well as a semilocal convergence analysis for Newton's method using unifying hypotheses on twice Fréchet-differentiable operators in a Banach space setting. Our approach extends the applicability of Newton's method. Numerical examples are also provided.
Ioannis K. Argyros (2001)
Applicationes Mathematicae
Similarity:
We provide new local and semilocal convergence results for Newton's method. We introduce Lipschitz-type hypotheses on the mth-Frechet derivative. This way we manage to enlarge the radius of convergence of Newton's method. Numerical examples are also provided to show that our results guarantee convergence where others do not.
Ioannis K. Argyros, Saïd Hilout (2010)
Applicationes Mathematicae
Similarity:
We provide a semilocal convergence analysis for approximating a solution of an equation in a Banach space setting using an inexact Newton method. By using recurrent functions, we provide under the same or weaker hypotheses: finer error bounds on the distances involved, and an at least as precise information on the location of the solution as in earlier papers. Moreover, if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained. Furthermore,...
Ioannis K. Argyros (2002)
Applicationes Mathematicae
Similarity:
We present a local and a semilocal analysis for Newton-like methods in a Banach space. Our hypotheses on the operators involved are very general. It turns out that by choosing special cases for the "majorizing" functions we obtain all previous results in the literature, but not vice versa. Since our results give a deeper insight into the structure of the functions involved, we can obtain semilocal convergence under weaker conditions and in the case of local convergence a larger convergence...