Displaying similar documents to “Tumour angiogenesis model with variable vessels' effectiveness”

The Effect of Bacteria on Epidermal Wound Healing

E. Agyingi, S. Maggelakis, D. Ross (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

Epidermal wound healing is a complex process that repairs injured tissue. The complexity of this process increases when bacteria are present in a wound; the bacteria interaction determines whether infection sets in. Because of underlying physiological problems infected wounds do not follow the normal healing pattern. In this paper we present a mathematical model of the healing of both infected and uninfected wounds. At the core of our...

Intensified Doxorubicin-Based Regimen Efficacy in Residual Non-Hodgkin's Lymphoma Disease: Towards a Computationally Supported Treatment Improvement

Y. Kogan, B. Ribba, K. Marron, N. Dahan, V. Vainstein, Z. Agur (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

Despite recent advances, treatment of patients with aggressive Non-Hodgkin's lymphoma (NHL) has yet to be optimally designed. Notwithstanding the contribution of molecular treatments, intensification of chemotherapeutic regimens may still be beneficial. Hoping to aid in the design of intensified chemotherapy, we put forward a mathematical and computational model that analyses the effect of Doxorubicin on NHL over a wide range of patho-physiological conditions. The model represents tumour...

Mathematical model of tumour cord growth along the source of nutrient

S. Astanin, A. Tosin (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

A mathematical model of the tumour growth along a blood vessel is proposed. The model employs the mixture theory approach to describe a tissue which consists of cells, extracellular matrix and liquid. The growing tumour tissue is supposed to be surrounded by the host tissue. Tumours where complete oxydation of glucose prevails are considered. Special attention is paid to consistent description of oxygen consumption and growth processes based on the energy balance. A finite difference...