Displaying similar documents to “An improved convergence analysis of Newton's method for twice Fréchet differentiable operators”

New unifying convergence criteria for Newton-like methods

Ioannis K. Argyros (2002)

Applicationes Mathematicae

Similarity:

We present a local and a semilocal analysis for Newton-like methods in a Banach space. Our hypotheses on the operators involved are very general. It turns out that by choosing special cases for the "majorizing" functions we obtain all previous results in the literature, but not vice versa. Since our results give a deeper insight into the structure of the functions involved, we can obtain semilocal convergence under weaker conditions and in the case of local convergence a larger convergence...

On a new method for enlarging the radius of convergence for Newton's method

Ioannis K. Argyros (2001)

Applicationes Mathematicae

Similarity:

We provide new local and semilocal convergence results for Newton's method. We introduce Lipschitz-type hypotheses on the mth-Frechet derivative. This way we manage to enlarge the radius of convergence of Newton's method. Numerical examples are also provided to show that our results guarantee convergence where others do not.

Local convergence theorems for Newton's method from data at one point

Ioannis K. Argyros (2002)

Applicationes Mathematicae

Similarity:

We provide local convergence theorems for the convergence of Newton's method to a solution of an equation in a Banach space utilizing only information at one point. It turns out that for analytic operators the convergence radius for Newton's method is enlarged compared with earlier results. A numerical example is also provided that compares our results favorably with earlier ones.

Expanding the applicability of two-point Newton-like methods under generalized conditions

Ioannis K. Argyros, Saïd Hilout (2013)

Applicationes Mathematicae

Similarity:

We use a two-point Newton-like method to approximate a locally unique solution of a nonlinear equation containing a non-differentiable term in a Banach space setting. Using more precise majorizing sequences than in earlier studies, we present a tighter semi-local and local convergence analysis and weaker convergence criteria. This way we expand the applicability of these methods. Numerical examples are provided where the old convergence criteria do not hold but the new convergence criteria...

On the convergence of two-step Newton-type methods of high efficiency index

Ioannis K. Argyros, Saïd Hilout (2009)

Applicationes Mathematicae

Similarity:

We introduce a new idea of recurrent functions to provide a new semilocal convergence analysis for two-step Newton-type methods of high efficiency index. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar type, and a differential equation containing a Green's kernel are also provided. ...

On the convergence of Newton's method under ω*-conditioned second derivative

Ioannis K. Argyros, Saïd Hilout (2011)

Applicationes Mathematicae

Similarity:

We provide a new semilocal result for the quadratic convergence of Newton's method under ω*-conditioned second Fréchet derivative on a Banach space. This way we can handle equations where the usual Lipschitz-type conditions are not verifiable. An application involving nonlinear integral equations and two boundary value problems is provided. It turns out that a similar result using ω-conditioned hypotheses can provide usable error estimates indicating only linear convergence for Newton's...

Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions

Ioannis K. Argyros, Santhosh George (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.

Improved local convergence analysis of inexact Newton-like methods under the majorant condition

Ioannis K. Argyros, Santhosh George (2015)

Applicationes Mathematicae

Similarity:

We present a local convergence analysis of inexact Newton-like methods for solving nonlinear equations. Using more precise majorant conditions than in earlier studies, we provide: a larger radius of convergence; tighter error estimates on the distances involved; and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.

On the solution and applications of generalized equations using Newton's method

Ioannis K. Argyros (2004)

Applicationes Mathematicae

Similarity:

We provide local and semilocal convergence results for Newton's method when used to solve generalized equations. Using Lipschitz as well as center-Lipschitz conditions on the operators involved instead of just Lipschitz conditions we show that our Newton-Kantorovich hypotheses are weaker than earlier sufficient conditions for the convergence of Newton's method. In the semilocal case we provide finer error bounds and a better information on the location of the solution. In the local case...

A convergence analysis of Newton's method under the gamma-condition in Banach spaces

Ioannis K. Argyros (2009)

Applicationes Mathematicae

Similarity:

We provide a local as well as a semilocal convergence analysis for Newton's method to approximate a locally unique solution of an equation in a Banach space setting. Using a combination of center-gamma with a gamma-condition, we obtain an upper bound on the inverses of the operators involved which can be more precise than those given in the elegant works by Smale, Wang, and Zhao and Wang. This observation leads (under the same or less computational cost) to a convergence analysis with...

Local convergence theorems of Newton’s method for nonlinear equations using outer or generalized inverses

Ioannis K. Argyros (2000)

Czechoslovak Mathematical Journal

Similarity:

We provide local convergence theorems for Newton’s method in Banach space using outer or generalized inverses. In contrast to earlier results we use hypotheses on the second instead of the first Fréchet-derivative. This way our convergence balls differ from earlier ones. In fact we show that with a simple numerical example that our convergence ball contains earlier ones. This way we have a wider choice of initial guesses than before. Our results can be used to solve undetermined systems,...